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Combinatorial Hopf algebras Definition of a combinatorial Hopf algebra

Specificities of a Hopf algebra

K is a field of characteristic 0.

H =
∞⊕

n=0
Hn: graded and connected vector space ie:

Hn is a vector space of dimension pn ∈ N∗ for any n ∈ N.
H0 ' K,
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Specificities of a Hopf algebra

The vector space H~ =
∞⊕

n=0
(Hn)∗ can be made into an algebra

thanks to the convolution productF.
For any f ∗ and g∗ in H~, we define f ∗Fg∗ by:

f ∗Fg∗ = m ◦ (f ∗ ⊗ g∗) ◦∆.

The co-unit ε is the unit of the productF.
The bialgebra (H,m, η,∆, ε) is a Hopf algebra if there exists
S ∈ H~ such that

SFId = IdFS = ε.
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Specificities of a Hopf algebra

K is a field of characteristic 0.

H =
∞⊕

n=0
Hn: graded and connected vector space.

(H,m, η): associative and unit algebra.
(H,∆, ε): coassociative and counit coalgebra.
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Combinatorial Hopf algebras Tensor Hopf algebra

K is a field of characteristic 0.
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Let V be a graded vector space such that V0 = (0). The Tensor
space T 〈V 〉 is defined by:
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Hopf algebras on walks on graphs Lawler’s procedure

Definition
Let Γ be a connected graph, ω = w1 . . .wm be a walk in Γ and Nod(ω)
the set of the nodes of Γ visited by ω.

1 The walk ω is called a self-avoiding walk if Nod(ω) is a set of
cardinality m.

2 The walk ω is called a simple cycle if w1 = wm and Nod(ω) is a set
of cardinality m − 1.

Examples
ρ = 15324 =

1 5 3 2 4
1 2 3 4 is a self-avoiding walk and

µ = 245912 =

2

4

5 9

1

1

2

3

4

5

a simple cycle.
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Hopf algebras on walks on graphs Lawler’s procedure

Let consider the walk σ = 12324522 =

1

2

34

5
1

2 345

6

7

. With the

Lawler’s loop erasing procedure we get:
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Hopf algebras on walks on graphs copre-Lie coalgebra

Definition
Let ω = w1 . . .wm be a walk in a finite or countable connected graph Γ.
We say that a walk ωll ′ := wlwl+1 . . .wl ′ is an admissible cut of ω when
it satisfies all of the following conditions

1 ωll ′ 6= ω and ωll ′ 6= () where () is the empty walk;
2 wl = wl ′ , i.e. ωll ′ is a closed walk;
3 ωll ′ is a cycle erased by the Lawler’s procedure
4 Let L be the set of loop-erased cycles ωkk ′ of ω such that k ′ > l ′

and ωll ′ is included in ωkk ′ .
Either L = ∅
or the minimum element ωkk ′

for inclusion satisfies the statement:
the letter wl does not appear in wl′+1 . . .wk ′ .

The set of admissible cuts of ω is denoted AdC(ω).
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Hopf algebras on walks on graphs copre-Lie coalgebra

Example
In the walk

γ = 12324345 = 2

3

4

1 5

1

2

3

4

5

6

7

,

the subwalk

γ36 = 3243 = 2

3

4

3

4

5

is not an admissible cut.
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Hopf algebras on walks on graphs copre-Lie coalgebra

Theorem (L. Foissy, P.L. Giscard, C. M., M. Ronco)

Let Γ be a finite or a countable connected graph andW(Γ) the vector
space sanned by its walks. Let define the linear map ∆CP by:

∆CP :


W(Γ) −→ W(Γ)⊗W(Γ)

ω 7→ ∆CP(ω) =
∑

ωll′∈AdC(ω)

ωll ′ ⊗ ωll ′ ,

where ω = w1 . . .wm is a walk, ωll ′ = w1 . . .wlwl ′+1 . . .wm and the sum
is taken over all the admissible cuts of ω. Then the vector spaceW(Γ),
equipped with the coproduct ∆CP, is a co-preLie (not counit) coalgebra
ie ∆CP satisfies the relation

(∆CP⊗Id−Id⊗∆CP)◦∆CP(ω) = (Id⊗τ)◦(∆CP ⊗ Id− Id⊗∆CP)◦∆CP(ω)
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Hopf algebras on walks on graphs copre-Lie coalgebra

Example

∆CP

(

i

j k

1

3

5

2 4 )
=

i

j k

1

3

5

4

⊗
j

2

+

i

j k

1

3

5

2

⊗
k

4

.
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Hopf algebras on walks on graphs Tensor and symmetric Hopf algebras

Definition
Let Γ be a finite or a countable connected graph and ω = w1 . . .wm be
a walk in Γ. An extended admissible cut of ω is a sequence

1 ≤ l1 < l ′1 < l2 < l ′2 < · · · < ls < l ′s ≤ m

satisfying that ωlk l ′k is an admissible cut of ω, for any 1 ≤ k ≤ s. The set
of extended admissible cuts of ω is denoted EAdC(ω).
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Hopf algebras on walks on graphs Tensor and symmetric Hopf algebras

Definition
We define the morphism of algebras ∆H defined by:

∆H :


T 〈W(Γ)〉 −→ T 〈W(Γ)〉 ⊗ T 〈W(Γ)〉

ω 7→ ∆H(ω) = ω ⊗ 1 + 1⊗ ω
+

∑
c∈EAdC(ω)

ωl1l ′1,...,ls l ′s ⊗ ω
l1l ′1 | . . . |ωls l ′s ,

where ω = w1 . . .wm is a walk in Γ, the extended admissible cut c is
the sequence 1 ≤ l1 < l ′1 < · · · < ls < l ′s ≤ m and the sum is taken over
all the extended admissible cuts of ω.
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Hopf algebras on walks on graphs Tensor and symmetric Hopf algebras

Example

∆H

(
i

j k

1

3

5

2 4 )
=

i

j k

1

3

5

2 4

⊗ 1

+ 1⊗

i

j k

1

3

5

2 4

+

i

j k

1

3

5

⊗
j

2

|
k

4

+ ∆CP

(
i

j k

1

3

5

2 4 )
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Hopf algebras on walks on graphs Tensor and symmetric Hopf algebras

Theorem (L. Foissy, P.L. Giscard, C. M., M. Ronco)
Let Γ a finite or countable connected graph. Consider the triple
(T 〈W(Γ)〉, ?,∆H). It is a Hopf algebra.

Theorem (L. Foissy, P.L. Giscard, C. M., M. Ronco)
In the graph Γ, we denote by I the vector space spanned by the
elements ω1| . . . |ωs − ωσ(1)| . . . |ωσ(s) where ω1| . . . |ωs ∈ T 〈W(Γ)〉 and
σ is a permutation. Then, I is a Hopf bi-ideal of T 〈W(Γ)〉. Thus,
(S〈W(Γ)〉,�,∆H) is a quotient Hopf algebra of T 〈W(Γ)〉.
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Hopf algebras on walks on graphs Antipode

Definition
Let Γ be a finite or a countable connected graph and ω = w1 . . .wm be
a walk in Γ such that AdC(ω) 6= ∅. For any

(
ωkk ′ , ωll ′) in AdC(ω)2, the

two following statements are equivalent:
1 ωkk ′ 6 ωll ′ .
2 l ≤ k < k ′ ≤ l ′ or k < k ′ < l < l ′.

Example
Let consider the walk

ψ = 34555444678879 =
3 4

5

6 7

8

9
1
2

3 4

5
6

7

8 9

10

11

12

13 .

Let ψ35 = 555, ψ45 = 55 and ψ11 12 = 88 be three elements in
AdC(ψ). Then, ψ45 6 ψ35 6 ψ11 12.
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Hopf algebras on walks on graphs Antipode

Proposition (L. Foissy, P.L. Giscard, C. M., M. Ronco)

Let ω be a non-empty finite walk such that AdC(ω) 6= ∅. Equipped with
the relation 6, the set AdC(ω) is a totally ordered set.

Example
Consider the walk

ψ = 34555444678879 =
3 4

5

6 7

8

9
1
2

3 4

5
6

7

8 9

10

11

12

13 .

Then

AdC(ψ) = {ψ45 6 ψ35 6 ψ78 6 ψ68 6 ψ28 6 ψ11 12 6 ψ10 13}.
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Hopf algebras on walks on graphs Antipode

Definition
Let ω be a non-empty finite walk, AdC(ω) be the set of its admissible
cuts and x(ω) ∈ N be the cardinality of AdC(ω). We assume
AdC(ω) 6= ∅. Let s ∈ {1, ..., x} be a positive integer and (ωl1l ′1 , . . . , ωls l ′s )
be a s-tuple of distinct admissible cuts of ω such that ωl1l ′1 6 · · · 6 ωls l ′s .
We associate to this s-tuple a tensor Tl1l ′1,...,ls l ′s as follows:

Tl1l ′1,...,ls l ′s = ωl1l ′1,...,ls l ′s |ω
ls l ′s
l1l ′1,...,ls−1l ′s−1

| · · · |ωli l ′i
l1l ′1,...,li−1l ′i−1

| · · · |ωl1l ′1 .

Theorem
Let Γ be a finite connected graph and ω a non-empty finite walk in Γ.
Then, in T 〈W(Γ)〉, the antipode S(ω) calculated on ω is given by:

S(ω) = −ω −
x(ω)∑
s=1

∑
ωl1 l′16···6ωls l′s

∀i, ωli l
′
i ∈AdC(ω)

∀i 6=j, ωli l
′
i 6=ωlj l

′
j

(−1)s Tl1l ′1,...,ls l ′s

where x(ω) is the cardinality of AdC(ω).
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Hopf algebras on walks on graphs Antipode

Example

Consider the walk κ = 12223445 =
1 2 3 4 5

1 4 5 7

2 3 6

. Then

AdC(κ) = {κ34 6 κ24 6 κ67} and the antipode of κ is

S(κ) =− κ+
1 2 3 4 51 4 5 7

2 6 |
2

3

+
1 2 3 4 51 4 5 7

2 3 |
4

6

+
1 2 3 4 51 4 5 7

6 |
2

2 3

−

1

2

3 4

5
1

4

5

7 |
4

6

|
2

2 3

−
1 2 3 4 51 4 5 7

6 |
2

2

|
2

3

−
1 2 3 4 51 4 5 7

2 |
4

6

|
2

3

+

1

2

3 4

5
1

4

5

7 |
4

6

|
2

2

|
2

3

.
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Reconstruction of the identity Obstacle

Pre-Lie product

The pre-Lie product on walks is given by the linear part in the dual
product of ∆H.

1 2

3

1
23

4 .

2

3

1 2 =
1 2

3

1
23

4

5
6

+
1 2

3

1

2
3

45

6 .

12312 . 232 = 1231232 + 1232312.

There are two terms in the result.
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Reconstruction of the identity Reconstruction of the identity

Theorem (L. Foissy, P.L. Giscard, C. M., M. Ronco)
Let ω walk in a connected finite or countable graph Γ. There exists a
unique integer p, a unique p-tuple (ω1, . . . , ωp) of walks such that:

ω = Parentheses
(
(ω1, ω2, . . . , ωp), .

)
.

Besides:
1 The reconstruction is essentially unique,
2 ω2, . . . , ωp are simple cycles,
3 ω1 is a self-avoiding walk or a simple cycle.
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Reconstruction of the identity Reconstruction of the identity

Questions:
1 How find the integer p and the walks ω1, . . . , ωp?
2 How find the couples of parentheses?

Answer: You have to use the total order 6 on the set AdC(ω).
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Reconstruction of the identity Example

Consider the walk ω =
1 2 3 4

5

6

1

2

3

4
5

67

8

9 10

11 .

Then: ω1 =
1 2 3 4

1 8 10 ω2 =

3

6

9 10 . And then,

τ =
2 3

5

2

3

4
5

67

=
2

2

.
2 3

5

3

4
5

67

=
2

2

.

(
2 3

5

3
67

.

3

5

4 5

)
.
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Reconstruction of the identity Example

Finally:

ω1 =
1 2 3 4

1 8 10 , ω2 =

3

6

9 10

ω3 =
2

2

, ω4 =
2 3

5

3
67

ω5 =

3

5

4 5 .

1 2 3 4

5

6

1

2

3

4
5

67

8

9 10

11 = (ω1 . ω2) . (ω3 . (ω4 . ω5)).
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