Algebraic structures on walks of graphs and algebraic reconstruction of the identity

Cécile Mammez

Laboratoire Paul Painlevé
Université de Lille

May $25^{\text {th }}, 2021$

Outlines

(1) Combinatorial Hopf algebras

- Definition of a combinatorial Hopf algebra
- Tensor Hopf algebra
(2) Hopf algebras on walks on graphs
- Lawler's procedure
- copre-Lie coalgebra
- Tensor and symmetric Hopf algebras
- Antipode
(3) Reconstruction of the identity
- Obstacle
- Reconstruction of the identity
- Example

Specificities of a Hopf algebra

Specificities of a Hopf algebra

- \mathbb{K} is a field of characteristic 0 .

Specificities of a Hopf algebra

- \mathbb{K} is a field of characteristic 0 .
- $\mathcal{H}=\bigoplus_{n=0}^{\infty} H_{n}$: graded and connected vector space ie:

Specificities of a Hopf algebra

- \mathbb{K} is a field of characteristic 0 .
- $\mathcal{H}=\bigoplus_{n=0}^{\infty} H_{n}$: graded and connected vector space ie:
- H_{n} is a vector space of dimension $p_{n} \in \mathbb{N}^{*}$ for any $n \in \mathbb{N}$.

Specificities of a Hopf algebra

- \mathbb{K} is a field of characteristic 0 .
- $\mathcal{H}=\bigoplus_{n=0}^{\infty} H_{n}$: graded and connected vector space ie:
- H_{n} is a vector space of dimension $p_{n} \in \mathbb{N}^{*}$ for any $n \in \mathbb{N}$.
- $H_{0} \simeq \mathbb{K}$,

Specificities of a Hopf algebra

- \mathbb{K} is a field of characteristic 0 .
- $\mathcal{H}=\bigoplus_{n=0}^{\infty} H_{n}$: graded and connected vector space.

Specificities of a Hopf algebra

- \mathbb{K} is a field of characteristic 0 .
- $\mathcal{H}=\bigoplus_{n=0}^{\infty} H_{n}$: graded and connected vector space.
- (\mathcal{H}, m, η) : associative and unit algebra:

Specificities of a Hopf algebra

- \mathbb{K} is a field of characteristic 0 .
- $\mathcal{H}=\bigoplus_{n=0}^{\infty} H_{n}$: graded and connected vector space.
- (\mathcal{H}, m, η) : associative and unit algebra:

Specificities of a Hopf algebra

- \mathbb{K} is a field of characteristic 0 .
- $\mathcal{H}=\bigoplus_{n=0}^{\infty} H_{n}$: graded and connected vector space.
- (\mathcal{H}, m, η) : associative and unit algebra:

- $\eta:\left\{\begin{array}{rll}\mathbb{K} & \longrightarrow & \mathcal{H} \\ k & \longrightarrow & k .1_{\mathcal{H}}\end{array}\right.$

Specificities of a Hopf algebra

- \mathbb{K} is a field of characteristic 0 .
- $\mathcal{H}=\bigoplus_{n=0}^{\infty} H_{n}$: graded and connected vector space.
- (\mathcal{H}, m, η) : associative and unit algebra.

Specificities of a Hopf algebra

- \mathbb{K} is a field of characteristic 0 .
- $\mathcal{H}=\bigoplus_{n=0}^{\infty} H_{n}$: graded and connected vector space.
- (\mathcal{H}, m, η): associative and unit algebra.
- $(\mathcal{H}, \Delta, \varepsilon)$: coassociative and counit coalgebra:

Specificities of a Hopf algebra

- \mathbb{K} is a field of characteristic 0 .
- $\mathcal{H}=\bigoplus_{n=0}^{\infty} H_{n}$: graded and connected vector space.
- (\mathcal{H}, m, η) : associative and unit algebra.
- $(\mathcal{H}, \Delta, \varepsilon)$: coassociative and counit coalgebra:

Specificities of a Hopf algebra

- \mathbb{K} is a field of characteristic 0 .
- $\mathcal{H}=\bigoplus_{n=0}^{\infty} H_{n}$: graded and connected vector space.
- (\mathcal{H}, m, η) : associative and unit algebra.
- $(\mathcal{H}, \Delta, \varepsilon)$: coassociative and counit coalgebra:

- $\varepsilon\left(k .1_{\mathcal{H}}\right)=k$ and $\varepsilon(h)=0$ if $h \notin H_{0}$.

Specificities of a Hopf algebra

- \mathbb{K} is a field of characteristic 0 .
- $H=\bigoplus_{n=0}^{\infty} H_{n}$: graded and connected vector space.
- (H, m, η): associative and unit algebra.
- (H, Δ, ε) : coassociative and counit coalgebra.

Specificities of a Hopf algebra

- \mathbb{K} is a field of characteristic 0 .
- $H=\bigoplus_{n=0}^{\infty} H_{n}$: graded and connected vector space.
- (H, m, η): associative and unit algebra.
- (H, Δ, ε) : coassociative and counit coalgebra.
- Δ and ε morphisms of algebras.

Specificities of a Hopf algebra

Specificities of a Hopf algebra

- The vector space $\mathcal{H}^{\circledast}=\bigoplus_{n=0}^{\infty}\left(H_{n}\right)^{*}$ can be made into an algebra thanks to the convolution product \star.

Specificities of a Hopf algebra

- The vector space $\mathcal{H}^{\circledast}=\bigoplus_{n=0}^{\infty}\left(H_{n}\right)^{*}$ can be made into an algebra thanks to the convolution product \star.
- For any f^{*} and g^{*} in $\mathcal{H}^{\circledast}$, we define $f^{*} \star g^{*}$ by:

$$
f^{*} \star g^{*}=m \circ\left(f^{*} \otimes g^{*}\right) \circ \Delta .
$$

Specificities of a Hopf algebra

- The vector space $\mathcal{H}^{\circledast}=\bigoplus_{n=0}^{\infty}\left(H_{n}\right)^{*}$ can be made into an algebra thanks to the convolution product \star.
- For any f^{*} and g^{*} in $\mathcal{H}^{\circledast}$, we define $f^{*} \star g^{*}$ by:

$$
f^{*} \star g^{*}=m \circ\left(f^{*} \otimes g^{*}\right) \circ \Delta .
$$

- The co-unit ε is the unit of the product \star.

Specificities of a Hopf algebra

- The vector space $\mathcal{H}^{\circledast}=\bigoplus_{n=0}^{\infty}\left(H_{n}\right)^{*}$ can be made into an algebra thanks to the convolution product \star.
- For any f^{*} and g^{*} in $\mathcal{H}^{\circledast}$, we define $f^{*} \star g^{*}$ by:

$$
f^{*} \star g^{*}=m \circ\left(f^{*} \otimes g^{*}\right) \circ \Delta .
$$

- The co-unit ε is the unit of the product \star.
- The bialgebra $(\mathcal{H}, m, \eta, \Delta, \varepsilon)$ is a Hopf algebra if there exists $S \in \mathcal{H}^{\circledast}$ such that

$$
S \star \operatorname{ld}=\operatorname{ld} \star S=\varepsilon
$$

Specificities of a Hopf algebra

- \mathbb{K} is a field of characteristic 0 .
- $H=\bigoplus_{n=0}^{\infty} H_{n}$: graded and connected vector space.
- (H,m, η): associative and unit algebra.
- (H, Δ, ε) : coassociative and counit coalgebra.
- Δ and ε morphisms of algebras.
- The antipode S exists.
- \mathbb{K} is a field of characteristic 0 .
- Let V be a graded vector space such that $V_{0}=(0)$. The Tensor space $T\langle V\rangle$ is defined by:

$$
T\langle V\rangle=\bigoplus_{n=0}^{\infty} \underbrace{V \otimes \ldots \otimes V}_{n \text { times }}=\bigoplus_{n=0}^{\infty} V^{\otimes^{n}}
$$

- \mathbb{K} is a field of characteristic 0 .
- Let V be a graded vector space such that $V_{0}=(0)$. The Tensor space $T\langle V\rangle$ is defined by:

$$
T\langle V\rangle=\bigoplus_{n=0}^{\infty} \underbrace{V \otimes \ldots \otimes V}_{n \text { times }}=\bigoplus_{n=0}^{\infty} V^{\otimes^{n}}
$$

- A tensor $v_{1} \otimes \ldots \otimes v_{n} \in V^{\otimes^{n}}$ is written $v_{1} \ldots v_{n}$.
- \mathbb{K} is a field of characteristic 0 .
- Let V be a graded vector space such that $V_{0}=(0)$. The Tensor space $T\langle V\rangle$ is defined by:

$$
T\langle V\rangle=\bigoplus_{n=0}^{\infty} \underbrace{V \otimes \ldots \otimes V}_{n \text { times }}=\bigoplus_{n=0}^{\infty} V^{\otimes^{n}}
$$

- Associative unit product on $T\langle V\rangle$: product - of concatenation.
- \mathbb{K} is a field of characteristic 0 .
- Let V be a graded vector space such that $V_{0}=(0)$. The Tensor space $T\langle V\rangle$ is defined by:

$$
T\langle V\rangle=\bigoplus_{n=0}^{\infty} \underbrace{V \otimes \ldots \otimes V}_{n \text { times }}=\bigoplus_{n=0}^{\infty} V^{\otimes^{n}}
$$

- Associative unit product on $T\langle V\rangle$: product - of concatenation.

$$
v_{1} \ldots v_{n} \cdot w_{1} \ldots w_{s}=v_{1} \ldots v_{n} w_{1} \ldots w_{s}
$$

- \mathbb{K} is a field of characteristic 0 .
- Let V be a graded vector space such that $V_{0}=(0)$. The Tensor space $T\langle V\rangle$ is defined by:

$$
T\langle V\rangle=\bigoplus_{n=0}^{\infty} \underbrace{V \otimes \ldots \otimes V}_{n \text { times }}=\bigoplus_{n=0}^{\infty} V^{\otimes^{n}}
$$

- Associative unit product on $T\langle V\rangle$: product - of concatenation.
- Coassociative counit coproduct: v is a primitive element for any $v \in V$.
- \mathbb{K} is a field of characteristic 0 .
- Let V be a graded vector space such that $V_{0}=(0)$. The Tensor space $T\langle V\rangle$ is defined by:

$$
T\langle V\rangle=\bigoplus_{n=0}^{\infty} \underbrace{V \otimes \ldots \otimes V}_{n \text { times }}=\bigoplus_{n=0}^{\infty} V^{\otimes^{n}}
$$

- Associative unit product on $T\langle V\rangle$: product - of concatenation.
- Coassociative counit coproduct: v is a primitive element for any $v \in V$.

$$
\begin{aligned}
\Delta(v) & =v \otimes 1+1 \otimes v \text { for any } v \in V, \\
\Delta\left(v_{1} v_{2}\right) & =\Delta\left(v_{1} \cdot v_{2}\right)=\Delta\left(v_{1}\right) \Delta\left(v_{2}\right) \\
& =\left(v_{1} \otimes 1+1 \otimes v_{1}\right)\left(v_{2} \otimes 1+1 \otimes v_{2}\right) \\
& =v_{1} v_{2} \otimes 1+v_{1} \otimes v_{2}+v_{2} \otimes v_{1}+1 \otimes v_{1} v_{2} .
\end{aligned}
$$

- \mathbb{K} is a field of characteristic 0 .
- Let V be a graded vector space such that $V_{0}=(0)$. The Tensor space $T\langle V\rangle$ is defined by:

$$
T\langle V\rangle=\bigoplus_{n=0}^{\infty} \underbrace{V \otimes \ldots \otimes V}_{n \text { times }}=\bigoplus_{n=0}^{\infty} V^{\otimes^{n}}
$$

- Associative unit product on $T\langle V\rangle$: product - of concatenation.
- Coassociative counit coproduct: v is a primitive element for any $v \in V$.
- Antipode: $S\left(v_{1} \ldots v_{n}\right)=(-1)^{n} v_{n} \ldots v_{1}$.

Definition

Let Γ be a connected graph, $\omega=w_{1} \ldots w_{m}$ be a walk in Γ and $\operatorname{Nod}(\omega)$ the set of the nodes of Γ visited by ω.
(1) The walk ω is called a self-avoiding walk if $\operatorname{Nod}(\omega)$ is a set of cardinality m.
(2) The walk ω is called a simple cycle if $w_{1}=w_{m}$ and $\operatorname{Nod}(\omega)$ is a set of cardinality $m-1$.

Definition

Let Γ be a connected graph, $\omega=w_{1} \ldots w_{m}$ be a walk in Γ and $\operatorname{Nod}(\omega)$ the set of the nodes of Γ visited by ω.
(1) The walk ω is called a self-avoiding walk if $\operatorname{Nod}(\omega)$ is a set of cardinality m.
(2) The walk ω is called a simple cycle if $w_{1}=w_{m}$ and $\operatorname{Nod}(\omega)$ is a set of cardinality $m-1$.

Examples

Lawler's loop erasing procedure we get:

Lawler's loop erasing procedure we get:

Definition

Let $\omega=w_{1} \ldots w_{m}$ be a walk in a finite or countable connected graph Γ. We say that a walk $\omega^{\prime \prime \prime}:=w_{l} w_{l+1} \ldots w_{l /}$ is an admissible cut of ω when it satisfies all of the following conditions

Definition

Let $\omega=w_{1} \ldots w_{m}$ be a walk in a finite or countable connected graph Γ. We say that a walk $\omega^{\prime \prime \prime}:=w_{l} w_{l+1} \ldots w_{l /}$ is an admissible cut of ω when it satisfies all of the following conditions
(1) $\omega^{\prime \prime \prime} \neq \omega$ and $\omega^{\prime \prime \prime} \neq()$ where () is the empty walk;

Definition

Let $\omega=w_{1} \ldots w_{m}$ be a walk in a finite or countable connected graph Γ. We say that a walk $\omega^{\prime \prime \prime}:=w_{l} w_{l+1} \ldots w_{l}$ is an admissible cut of ω when it satisfies all of the following conditions
(1) $\omega^{\prime \prime \prime} \neq \omega$ and $\omega^{\prime \prime \prime} \neq()$ where () is the empty walk;
(2) $w_{l}=w_{l \prime}$, i.e. $\omega^{\prime \prime \prime}$ is a closed walk;

Definition

Let $\omega=w_{1} \ldots w_{m}$ be a walk in a finite or countable connected graph Γ. We say that a walk $\omega^{\prime \prime \prime}:=w_{l} w_{l+1} \ldots w_{l /}$ is an admissible cut of ω when it satisfies all of the following conditions
(1) $\omega^{\prime \prime \prime} \neq \omega$ and $\omega^{\prime \prime \prime} \neq()$ where () is the empty walk;
(2) $w_{l}=w_{l^{\prime}}$, i.e. $\omega^{\prime \prime \prime}$ is a closed walk;
(3) $\omega^{\prime \prime \prime}$ is a cycle erased by the Lawler's procedure

Definition

Let $\omega=w_{1} \ldots w_{m}$ be a walk in a finite or countable connected graph Γ. We say that a walk $\omega^{\prime \prime \prime}:=w_{l} w_{l+1} \ldots w_{l /}$ is an admissible cut of ω when it satisfies all of the following conditions
(1) $\omega^{\prime \prime \prime} \neq \omega$ and $\omega^{\prime \prime \prime} \neq()$ where () is the empty walk;
(2) $w_{l}=w_{l^{\prime}}$, i.e. $\omega^{\prime \prime \prime}$ is a closed walk;
(3) $\omega^{\prime \prime \prime}$ is a cycle erased by the Lawler's procedure
(4) Let \mathcal{L} be the set of loop-erased cycles $\omega^{k k^{\prime}}$ of ω such that $k^{\prime}>\prime^{\prime}$ and $\omega^{\prime \prime \prime}$ is included in $\omega^{k k^{\prime}}$.

Definition

Let $\omega=w_{1} \ldots w_{m}$ be a walk in a finite or countable connected graph Γ. We say that a walk $\omega^{\prime \prime \prime}:=w_{l} w_{l+1} \ldots w_{l /}$ is an admissible cut of ω when it satisfies all of the following conditions
(1) $\omega^{\prime \prime \prime} \neq \omega$ and $\omega^{\prime \prime \prime} \neq()$ where () is the empty walk;
(2) $w_{l}=w_{l^{\prime}}$, i.e. $\omega^{\prime \prime \prime}$ is a closed walk;
(3) $\omega^{\prime \prime \prime}$ is a cycle erased by the Lawler's procedure
(4) Let \mathcal{L} be the set of loop-erased cycles $\omega^{k k^{\prime}}$ of ω such that $k^{\prime}>\prime^{\prime}$ and $\omega^{\prime \prime \prime}$ is included in $\omega^{k k^{\prime}}$.

- Either $\mathcal{L}=\emptyset$

Definition

Let $\omega=w_{1} \ldots w_{m}$ be a walk in a finite or countable connected graph Γ. We say that a walk $\omega^{\prime \prime \prime}:=w_{l} w_{l+1} \ldots w_{l}$ is an admissible cut of ω when it satisfies all of the following conditions
(1) $\omega^{\prime \prime \prime} \neq \omega$ and $\omega^{\prime \prime \prime} \neq()$ where () is the empty walk;
(2) $w_{l}=w_{l}$, i.e. $\omega^{\prime \prime \prime}$ is a closed walk;
(3) $\omega^{\prime \prime \prime}$ is a cycle erased by the Lawler's procedure
(4) Let \mathcal{L} be the set of loop-erased cycles $\omega^{k k^{\prime}}$ of ω such that $k^{\prime}>I^{\prime}$ and $\omega^{\prime l^{\prime}}$ is included in $\omega^{k k^{\prime}}$.

- Either $\mathcal{L}=\emptyset$
- or the minimum element $\omega^{k k^{\prime}}$ for inclusion satisfies the statement: the letter w_{l} does not appear in $w_{l^{\prime}+1} \ldots w_{k^{\prime}}$.
The set of admissible cuts of ω is denoted $\operatorname{AdC}(\omega)$.

Example

In the walk

$$
\gamma=12324345=
$$

the subwalk

is not an admissible cut.

Theorem (L. Foissy, P.L. Giscard, C. M., M. Ronco)

Let Γ be a finite or a countable connected graph and $\mathcal{W}(\Gamma)$ the vector space sanned by its walks. Let define the linear map $\Delta_{C P}$ by:

$$
\Delta_{C P}:\left\{\begin{array}{rlr}
\mathcal{W}(\Gamma) & \longrightarrow \mathcal{W}(\Gamma) \otimes \mathcal{W}(\Gamma) \\
\omega & \mapsto & \Delta_{C P}(\omega)=\sum_{\omega^{\prime \prime \prime} \in A d C(\omega)} \omega_{\|^{\prime}} \otimes \omega^{\prime \prime^{\prime}}
\end{array}\right.
$$

where $\omega=w_{1} \ldots w_{m}$ is a walk, $\omega_{I^{\prime}}=w_{1} \ldots w_{l} w_{l^{\prime}+1} \ldots w_{m}$ and the sum is taken over all the admissible cuts of ω. Then the vector space $\mathcal{W}(\Gamma)$, equipped with the coproduct $\Delta_{C P}$, is a co-preLie (not counit) coalgebra ie $\Delta_{C P}$ satisfies the relation
$\left(\Delta_{C P} \otimes I d-I d \otimes \Delta_{C P}\right) \circ \Delta_{C P}(\omega)=(I d \otimes \tau) \circ\left(\Delta_{C P} \otimes I d-I d \otimes \Delta_{C P}\right) \circ \Delta_{C P}(\omega)$

Example

Definition

Let Γ be a finite or a countable connected graph and $\omega=w_{1} \ldots w_{m}$ be a walk in Γ. An extended admissible cut of ω is a sequence

$$
1 \leq I_{1}<I_{1}^{\prime}<I_{2}<I_{2}^{\prime}<\cdots<I_{s}<I_{s}^{\prime} \leq m
$$

satisfying that $\omega^{l_{k} k_{k}^{\prime \prime}}$ is an admissible cut of ω, for any $1 \leq k \leq s$. The set of extended admissible cuts of ω is denoted $\operatorname{EAdC}(\omega)$.

Definition

We define the morphism of algebras Δ_{H} defined by:

$$
\Delta_{\mathrm{H}}:\left\{\begin{array}{rll}
\mathcal{T}\langle\mathcal{W}(\Gamma)\rangle & \longrightarrow & \mathcal{T}\langle\mathcal{W}(\Gamma)\rangle \otimes \mathcal{T}\langle\mathcal{W}(\Gamma)\rangle \\
\omega & \mapsto & \Delta_{\mathrm{H}}(\omega)=\omega \otimes 1+1 \otimes \omega \\
& & +\sum_{c \in E A d C(\omega)} \omega_{l_{1}^{\prime \prime}, \ldots, l_{s}^{\prime \prime} s_{s}^{\prime}} \otimes \omega^{\omega_{1}^{\prime} 1^{\prime}|\ldots| \omega^{\prime s l_{s}^{\prime}},}
\end{array}\right.
$$

where $\omega=w_{1} \ldots w_{m}$ is a walk in Γ, the extended admissible cut c is the sequence $1 \leq I_{1}<l_{1}^{\prime}<\cdots<I_{s}<l_{s}^{\prime} \leq m$ and the sum is taken over all the extended admissible cuts of ω.

Example

Theorem (L. Foissy, P.L. Giscard, C. M., M. Ronco)

Let Γ a finite or countable connected graph. Consider the triple $\left(\mathcal{T}\langle\mathcal{W}(\Gamma)\rangle, \star, \Delta_{H}\right)$. It is a Hopf algebra.

Theorem (L. Foissy, P.L. Giscard, C. M., M. Ronco)
Let Γ a finite or countable connected graph. Consider the triple $\left(\mathcal{T}\langle\mathcal{W}(\Gamma)\rangle, \star, \Delta_{H}\right)$. It is a Hopf algebra.

Theorem (L. Foissy, P.L. Giscard, C. M., M. Ronco)
In the graph Γ, we denote by \mathcal{I} the vector space spanned by the elements $\omega_{1}|\ldots| \omega_{s}-\omega_{\sigma(1)}|\ldots| \omega_{\sigma(s)}$ where $\omega_{1}|\ldots| \omega_{s} \in \mathcal{T}\langle\mathcal{W}(\Gamma)\rangle$ and σ is a permutation. Then, \mathcal{I} is a Hopf bi-ideal of $\mathcal{T}\langle\mathcal{W}(\Gamma)\rangle$. Thus, $\left(\mathcal{S}\langle\mathcal{W}(\Gamma)\rangle, \square, \Delta_{H}\right)$ is a quotient Hopf algebra of $\mathcal{T}\langle\mathcal{W}(\Gamma)\rangle$.

Definition

Let Γ be a finite or a countable connected graph and $\omega=w_{1} \ldots w_{m}$ be a walk in 「 such that $\operatorname{AdC}(\omega) \neq \emptyset$. For any $\left(\omega^{k k^{\prime}}, \omega^{\prime \prime \prime}\right)$ in $\operatorname{AdC}(\omega)^{2}$, the two following statements are equivalent:
(1) $\omega^{k k^{\prime}} \leqslant \omega^{\prime \prime \prime}$.
(2) $I \leq k<k^{\prime} \leq I^{\prime}$ or $k<k^{\prime}<I<I^{\prime}$.

Definition

Let Γ be a finite or a countable connected graph and $\omega=w_{1} \ldots w_{m}$ be a walk in 「 such that $\operatorname{AdC}(\omega) \neq \emptyset$. For any $\left(\omega^{k k^{\prime}}, \omega^{\prime \prime \prime}\right)$ in $\operatorname{AdC}(\omega)^{2}$, the two following statements are equivalent:
(1) $\omega^{k k^{\prime}} \leqslant \omega^{\prime \prime \prime}$.
(2) $I \leq k<k^{\prime} \leq I^{\prime}$ or $k<k^{\prime}<I<I^{\prime}$.

Example

Let consider the walk

$$
\psi=34555444678879=
$$

Let $\psi^{35}=555, \psi^{45}=55$ and $\psi^{11} 12=88$ be three elements in $\operatorname{AdC}(\psi)$. Then, $\psi^{45} \leqslant \psi^{35} \leqslant \psi^{11} 12$.

Proposition (L. Foissy, P.L. Giscard, C. M., M. Ronco)
Let ω be a non-empty finite walk such that $\operatorname{AdC}(\omega) \neq \emptyset$. Equipped with the relation \leqslant, the set $\operatorname{AdC}(\omega)$ is a totally ordered set.

Proposition (L. Foissy, P.L. Giscard, C. M., M. Ronco)
Let ω be a non-empty finite walk such that $\operatorname{AdC}(\omega) \neq \emptyset$. Equipped with the relation \leqslant, the set $\operatorname{AdC}(\omega)$ is a totally ordered set.

Example

Consider the walk

$$
\psi=34555444678879=
$$

Then

$$
\operatorname{AdC}(\psi)=\left\{\psi^{45} \leqslant \psi^{35} \leqslant \psi^{78} \leqslant \psi^{68} \leqslant \psi^{28} \leqslant \psi^{1112} \leqslant \psi^{1013}\right\} .
$$

Definition

Let ω be a non-empty finite walk, $\operatorname{AdC}(\omega)$ be the set of its admissible cuts and $x(\omega) \in \mathbb{N}$ be the cardinality of $\operatorname{AdC}(\omega)$. We assume $\operatorname{AdC}(\omega) \neq \emptyset$. Let $s \in\{1, \ldots, x\}$ be a positive integer and $\left(\omega^{l_{1}^{\prime \prime}}, \ldots, \omega^{l s l_{s}^{\prime \prime}}\right)$ be a s-tuple of distinct admissible cuts of ω such that $\omega^{11_{1}^{\prime \prime}} \leqslant \cdots \leqslant \omega^{l_{s} s_{s}^{\prime}}$. We associate to this s-tuple a tensor $T_{1 l_{1}^{\prime}, \ldots, s^{\prime} s_{s}^{\prime}}$ as follows:

Definition

Let ω be a non-empty finite walk, $\operatorname{AdC}(\omega)$ be the set of its admissible cuts and $x(\omega) \in \mathbb{N}$ be the cardinality of $\operatorname{AdC}(\omega)$. We assume $\operatorname{AdC}(\omega) \neq \emptyset$. Let $s \in\{1, \ldots, x\}$ be a positive integer and $\left(\omega^{l_{1} l_{1}^{\prime}}, \ldots, \omega^{s_{s} l_{s}^{\prime}}\right)$ be a s-tuple of distinct admissible cuts of ω such that $\omega^{I_{1} l_{1}^{\prime}} \leqslant \cdots \leqslant \omega^{l_{s} l_{s}^{\prime}}$. We associate to this s-tuple a tensor $T_{l_{1} l_{1}^{\prime}, \ldots, l_{s} l_{s}^{\prime}}$ as follows:

$$
T_{l_{1} l_{1}^{\prime}, \ldots, l_{s} l_{s}^{\prime}}=\omega_{l_{1} l_{1}^{\prime}, \ldots, l_{s} l_{s}^{\prime}}\left|\omega_{l_{1}, \ldots, l_{s-1}^{\prime}}^{l_{1}^{\prime} l_{s}^{\prime}} l_{s-1}^{\prime}\right| \cdots\left|\omega_{l_{1}^{\prime}, \ldots, l_{i-1} l_{i-1}^{\prime}}^{l_{i} l_{i}^{\prime}}\right| \cdots \mid \omega^{l_{1} l_{1}^{\prime}} .
$$

Theorem

Let Γ be a finite connected graph and ω a non-empty finite walk in Γ. Then, in $\mathcal{T}\langle\mathcal{W}(\Gamma)\rangle$, the antipode $S(\omega)$ calculated on ω is given by:

Example

Consider the walk $k=12223445=$ $\operatorname{AdC}(\kappa)=\left\{\kappa^{34} \leqslant \kappa^{24} \leqslant \kappa^{67}\right\}$ and the antipode of κ is

Pre-Lie product

Pre-Lie product
The pre-Lie product on walks is given by the linear part in the dual product of Δ_{H}.

Pre-Lie product

The pre-Lie product on walks is given by the linear part in the dual product of Δ_{H}.

$12312 \triangleright 232=1231232+1232312$.
There are two terms in the result.

Theorem (L. Foissy, P.L. Giscard, C. M., M. Ronco)

Let ω walk in a connected finite or countable graph Г. There exists a unique integer p, a unique p-tuple $\left(\omega_{1}, \ldots, \omega_{p}\right)$ of walks such that:

$$
\omega=\text { Parentheses }\left(\left(\omega_{1}, \omega_{2}, \ldots, \omega_{p}\right), \triangleright\right) .
$$

Besides:
(1) The reconstruction is essentially unique,
(2) $\omega_{2}, \ldots, \omega_{p}$ are simple cycles,
(3) ω_{1} is a self-avoiding walk or a simple cycle.

Questions:

(1) How find the integer p and the walks $\omega_{1}, \ldots, \omega_{p}$?
(2) How find the couples of parentheses?

Questions:
(1) How find the integer p and the walks $\omega_{1}, \ldots, \omega_{p}$?
(2) How find the couples of parentheses?

Answer: You have to use the total order \leqslant on the set $\operatorname{AdC}(\omega)$.

Finally:

$\stackrel{\square 11}{\longrightarrow}=\left(\omega_{1} \triangleright \omega_{2}\right) \triangleright\left(\omega_{3} \triangleright\left(\omega_{4} \triangleright \omega_{5}\right)\right)$.

