Algebraic structures on walks of graphs and algebraic reconstruction of the identity

Cécile Mammez

Laboratoire Paul Painlevé Université de Lille

May 25th, 2021

Outlines

- Combinatorial Hopf algebras
 - Definition of a combinatorial Hopf algebra
 - Tensor Hopf algebra
- Hopf algebras on walks on graphs
 - Lawler's procedure
 - copre-Lie coalgebra
 - Tensor and symmetric Hopf algebras
 - Antipode
- Reconstruction of the identity
 - Obstacle
 - Reconstruction of the identity
 - Example

• K is a field of characteristic 0.

- ullet is a field of characteristic 0.
- $\mathcal{H} = \bigoplus_{n=0}^{\infty} H_n$: graded and connected vector space *ie*:

- K is a field of characteristic 0.
- $\mathcal{H} = \bigoplus_{n=0}^{\infty} H_n$: graded and connected vector space *ie*:
 - H_n is a vector space of dimension $p_n \in \mathbb{N}^*$ for any $n \in \mathbb{N}$.

- K is a field of characteristic 0.
- $\mathcal{H} = \bigoplus_{n=0}^{\infty} H_n$: graded and connected vector space *ie*:
 - H_n is a vector space of dimension $p_n \in \mathbb{N}^*$ for any $n \in \mathbb{N}$.
 - $\bullet \ \ H_0 \simeq \mathbb{K},$

- K is a field of characteristic 0.
- $\mathcal{H} = \bigoplus_{n=0}^{\infty} H_n$: graded and connected vector space.

- K is a field of characteristic 0.
- $\mathcal{H} = \bigoplus_{n=0}^{\infty} H_n$: graded and connected vector space.
- (\mathcal{H}, m, η) : associative and unit algebra:

- K is a field of characteristic 0.
- $\mathcal{H} = \bigoplus_{n=0}^{\infty} H_n$: graded and connected vector space.
- (\mathcal{H}, m, η) : associative and unit algebra:

- K is a field of characteristic 0.
- $\mathcal{H} = \bigoplus_{n=0}^{\infty} H_n$: graded and connected vector space.
- (\mathcal{H}, m, η) : associative and unit algebra:

$$\mathbb{K} \otimes \mathcal{H} \xrightarrow{\eta \otimes \text{Id}} \mathcal{H} \otimes \mathcal{H} \xleftarrow{\text{Id} \otimes \eta} \mathcal{H} \otimes \mathbb{K} \ .$$

$$\bullet \ \eta : \left\{ \begin{array}{ccc} \mathbb{K} & \longrightarrow & \mathcal{H} \\ k & \longrightarrow & k.1_{\mathcal{H}} \end{array} \right.$$

- K is a field of characteristic 0.
- $\mathcal{H} = \bigoplus_{n=0}^{\infty} H_n$: graded and connected vector space.
- (\mathcal{H}, m, η) : associative and unit algebra.

- K is a field of characteristic 0.
- $\mathcal{H} = \bigoplus_{n=0}^{\infty} H_n$: graded and connected vector space.
- (\mathcal{H}, m, η) : associative and unit algebra.
- $(\mathcal{H}, \Delta, \varepsilon)$: coassociative and counit coalgebra:

- K is a field of characteristic 0.
- $\mathcal{H} = \bigoplus_{n=0}^{\infty} H_n$: graded and connected vector space.
- (\mathcal{H}, m, η) : associative and unit algebra.
- $(\mathcal{H}, \Delta, \varepsilon)$: coassociative and counit coalgebra:

- K is a field of characteristic 0.
- $\mathcal{H} = \bigoplus_{n=0}^{\infty} H_n$: graded and connected vector space.
- (\mathcal{H}, m, η) : associative and unit algebra.
- $(\mathcal{H}, \Delta, \varepsilon)$: coassociative and counit coalgebra:

• $\varepsilon(k.1_{\mathcal{H}}) = k$ and $\varepsilon(h) = 0$ if $h \notin H_0$.

- K is a field of characteristic 0.
- $H = \bigoplus_{n=0}^{\infty} H_n$: graded and connected vector space.
- (H, m, η) : associative and unit algebra.
- (H, Δ, ε) : coassociative and counit coalgebra.

- K is a field of characteristic 0.
- $H = \bigoplus_{n=0}^{\infty} H_n$: graded and connected vector space.
- (H, m, η) : associative and unit algebra.
- (H, Δ, ε) : coassociative and counit coalgebra.
- Δ and ε morphisms of algebras.

• The vector space $\mathcal{H}^{\circledast} = \bigoplus_{n=0}^{\infty} (H_n)^*$ can be made into an algebra thanks to the convolution product \bigstar .

- The vector space $\mathcal{H}^{\circledast} = \bigoplus_{n=0}^{\infty} (H_n)^*$ can be made into an algebra thanks to the convolution product \bigstar .
- For any f^* and g^* in $\mathcal{H}^{\circledast}$, we define $f^* \bigstar g^*$ by:

$$f^* \bigstar g^* = m \circ (f^* \otimes g^*) \circ \Delta.$$

- The vector space $\mathcal{H}^{\circledast} = \bigoplus_{n=0}^{\infty} (H_n)^*$ can be made into an algebra thanks to the convolution product \bigstar .
- For any f^* and g^* in \mathcal{H}^* , we define $f^* \bigstar g^*$ by:

$$f^* \bigstar g^* = m \circ (f^* \otimes g^*) \circ \Delta.$$

The co-unit ε is the unit of the product ★.

- The vector space $\mathcal{H}^{\circledast} = \bigoplus_{n=0}^{\infty} (H_n)^*$ can be made into an algebra thanks to the convolution product \bigstar .
- For any f^* and g^* in \mathcal{H}^* , we define $f^* \bigstar g^*$ by:

$$f^* \bigstar g^* = m \circ (f^* \otimes g^*) \circ \Delta.$$

- The co-unit ε is the unit of the product ★.
- The bialgebra $(\mathcal{H}, m, \eta, \Delta, \varepsilon)$ is a Hopf algebra if there exists $S \in \mathcal{H}^{\circledast}$ such that

$$S \bigstar Id = Id \bigstar S = \varepsilon$$
.

- K is a field of characteristic 0.
- $H = \bigoplus_{n=0}^{\infty} H_n$: graded and connected vector space.
- (H, m, η) : associative and unit algebra.
- (H, Δ, ε) : coassociative and counit coalgebra.
- Δ and ε morphisms of algebras.
- The antipode S exists.

Combinatorial Hopf algebras

algebras Tensor Hopf algebra

- K is a field of characteristic 0.
- Let V be a graded vector space such that $V_0 = (0)$. The Tensor space $T\langle V \rangle$ is defined by:

$$T\langle V \rangle = \bigoplus_{n=0}^{\infty} \underbrace{V \otimes \ldots \otimes V}_{n \text{ times}} = \bigoplus_{n=0}^{\infty} V^{\otimes^n}.$$

- K is a field of characteristic 0.
- Let V be a graded vector space such that $V_0 = (0)$. The Tensor space $T\langle V \rangle$ is defined by:

$$T\langle V\rangle = \bigoplus_{n=0}^{\infty} \underbrace{V \otimes \ldots \otimes V}_{n \text{ times}} = \bigoplus_{n=0}^{\infty} V^{\otimes^n}.$$

• A tensor $v_1 \otimes \ldots \otimes v_n \in V^{\otimes^n}$ is written $v_1 \ldots v_n$.

- K is a field of characteristic 0.
- Let V be a graded vector space such that $V_0 = (0)$. The Tensor space $T\langle V \rangle$ is defined by:

$$T\langle V\rangle = \bigoplus_{n=0}^{\infty} \underbrace{V \otimes \ldots \otimes V}_{n \text{ times}} = \bigoplus_{n=0}^{\infty} V^{\otimes^n}.$$

• Associative unit product on $T\langle V \rangle$: product · of concatenation.

- K is a field of characteristic 0.
- Let V be a graded vector space such that V₀ = (0). The Tensor space T⟨V⟩ is defined by:

$$T\langle V \rangle = \bigoplus_{n=0}^{\infty} \underbrace{V \otimes \ldots \otimes V}_{n \text{ times}} = \bigoplus_{n=0}^{\infty} V^{\otimes^n}.$$

• Associative unit product on T(V): product \cdot of concatenation.

$$V_1 \ldots V_n \cdot W_1 \ldots W_s = V_1 \ldots V_n W_1 \ldots W_s$$
.

- K is a field of characteristic 0.
- Let V be a graded vector space such that V₀ = (0). The Tensor space T⟨V⟩ is defined by:

$$T\langle V \rangle = \bigoplus_{n=0}^{\infty} \underbrace{V \otimes \ldots \otimes V}_{n \text{ times}} = \bigoplus_{n=0}^{\infty} V^{\otimes^n}.$$

- Associative unit product on $T\langle V \rangle$: product \cdot of concatenation.
- Coassociative counit coproduct: v is a primitive element for any v ∈ V.

- K is a field of characteristic 0.
- Let V be a graded vector space such that V₀ = (0). The Tensor space T⟨V⟩ is defined by:

$$T\langle V \rangle = \bigoplus_{n=0}^{\infty} \underbrace{V \otimes \ldots \otimes V}_{n \text{ times}} = \bigoplus_{n=0}^{\infty} V^{\otimes^n}.$$

- Associative unit product on T(V): product \cdot of concatenation.
- Coassociative counit coproduct: v is a primitive element for any v ∈ V.

$$\begin{split} \Delta(v) = & v \otimes 1 + 1 \otimes v \text{ for any } v \in V, \\ \Delta(v_1 v_2) = & \Delta(v_1 \cdot v_2) = \Delta(v_1) \Delta(v_2) \\ = & (v_1 \otimes 1 + 1 \otimes v_1) (v_2 \otimes 1 + 1 \otimes v_2) \\ = & v_1 v_2 \otimes 1 + v_1 \otimes v_2 + v_2 \otimes v_1 + 1 \otimes v_1 v_2. \end{split}$$

- K is a field of characteristic 0.
- Let V be a graded vector space such that V₀ = (0). The Tensor space T⟨V⟩ is defined by:

$$T\langle V \rangle = \bigoplus_{n=0}^{\infty} \underbrace{V \otimes \ldots \otimes V}_{n \text{ times}} = \bigoplus_{n=0}^{\infty} V^{\otimes^n}.$$

- Associative unit product on T(V): product \cdot of concatenation.
- Coassociative counit coproduct: v is a primitive element for any $v \in V$.
- Antipode: $S(v_1 ... v_n) = (-1)^n v_n ... v_1$.

Hopf algebras on walks on graphs Lawler's procedure

Definition

Let Γ be a connected graph, $\omega = w_1 \dots w_m$ be a walk in Γ and Nod(ω) the set of the nodes of Γ visited by ω .

- The walk ω is called a self-avoiding walk if Nod(ω) is a set of cardinality m.
- ② The walk ω is called a simple cycle if $w_1 = w_m$ and Nod(ω) is a set of cardinality m-1.

Definition

Let Γ be a connected graph, $\omega = w_1 \dots w_m$ be a walk in Γ and Nod(ω) the set of the nodes of Γ visited by ω .

- The walk ω is called a self-avoiding walk if Nod(ω) is a set of cardinality m.
- ② The walk ω is called a simple cycle if $w_1 = w_m$ and Nod(ω) is a set of cardinality m-1.

Examples

$$\rho=15324=\underbrace{\begin{array}{c}1\\0\\1\end{array}}_{5}\underbrace{\begin{array}{c}3\\3\\3\end{array}}_{2}\underbrace{\begin{array}{c}4\\4\\4\end{array}}_{4}\text{ is a self-avoiding walk and}$$

$$\mu=245912=\underbrace{\begin{array}{c}2\\2\\4\end{array}}_{1}\text{ a simple cycle.}$$

Hopf algebras on walks on graphs Lawler's procedure

Let consider the walk
$$\sigma = 12324522 = \frac{1}{5}$$

Let $\omega=w_1\dots w_m$ be a walk in a finite or countable connected graph Γ . We say that a walk $\omega^{ll'}:=w_lw_{l+1}\dots w_{l'}$ is an admissible cut of ω when it satisfies all of the following conditions

• $\omega^{\parallel\prime} \neq \omega$ and $\omega^{\parallel\prime} \neq$ () where () is the empty walk;

- $\omega^{ll'} \neq \omega$ and $\omega^{ll'} \neq$ () where () is the empty walk;
- ② $w_l = w_{l'}$, i.e. $\omega^{ll'}$ is a closed walk;

- $\omega^{ll'} \neq \omega$ and $\omega^{ll'} \neq ()$ where () is the empty walk;
- ② $w_l = w_{l'}$, i.e. $\omega^{ll'}$ is a closed walk;
- \circ ω''' is a cycle erased by the Lawler's procedure

- $\omega''' \neq \omega$ and $\omega''' \neq ()$ where () is the empty walk;
- ② $w_l = w_{l'}$, i.e. $\omega^{ll'}$ is a closed walk;
- \circ ω''' is a cycle erased by the Lawler's procedure
- 4 Let $\mathcal L$ be the set of loop-erased cycles $\omega^{kk'}$ of ω such that k' > l' and $\omega^{ll'}$ is included in $\omega^{kk'}$.

- $\omega^{ll'} \neq \omega$ and $\omega^{ll'} \neq ()$ where () is the empty walk;
- ② $w_l = w_{l'}$, i.e. $\omega^{ll'}$ is a closed walk;
- \circ ω''' is a cycle erased by the Lawler's procedure
- 4 Let $\mathcal L$ be the set of loop-erased cycles $\omega^{kk'}$ of ω such that k' > l' and $\omega^{ll'}$ is included in $\omega^{kk'}$.
 - Either $\mathcal{L} = \emptyset$

Let $\omega=w_1\dots w_m$ be a walk in a finite or countable connected graph Γ . We say that a walk $\omega^{ll'}:=w_lw_{l+1}\dots w_{l'}$ is an admissible cut of ω when it satisfies all of the following conditions

- $\omega''' \neq \omega$ and $\omega''' \neq 0$ where () is the empty walk;
- ② $w_l = w_{l'}$, i.e. $\omega^{ll'}$ is a closed walk;
- \odot ω''' is a cycle erased by the Lawler's procedure
- 4 Let $\mathcal L$ be the set of loop-erased cycles $\omega^{kk'}$ of ω such that k' > l' and $\omega^{ll'}$ is included in $\omega^{kk'}$.
 - Either $\mathcal{L} = \emptyset$
 - or the minimum element $\omega^{kk'}$ for inclusion satisfies the statement: the letter w_l does not appear in $w_{l'+1} \dots w_{k'}$.

The set of admissible cuts of ω is denoted $AdC(\omega)$.

Example

In the walk

$$\gamma = 12324345 = 2$$

the subwalk

$$\gamma^{36} = 3243 = 200$$

is not an admissible cut.

Theorem (L. Foissy, P.L. Giscard, C. M., M. Ronco)

Let Γ be a finite or a countable connected graph and $W(\Gamma)$ the vector space sanned by its walks. Let define the linear map Δ_{CP} by:

$$\Delta_{\textit{CP}}: \left\{ \begin{array}{ccc} \mathcal{W}(\Gamma) & \longrightarrow & \mathcal{W}(\Gamma) \otimes \mathcal{W}(\Gamma) \\ \omega & \mapsto & \Delta_{\textit{CP}}(\omega) = \sum_{\omega''' \in \textit{AdC}(\omega)} \omega_{\textit{II'}} \otimes \omega''', \end{array} \right.$$

where $\omega = w_1 \dots w_m$ is a walk, $\omega_{ll'} = w_1 \dots w_l w_{l'+1} \dots w_m$ and the sum is taken over all the admissible cuts of ω . Then the vector space $\mathcal{W}(\Gamma)$, equipped with the coproduct Δ_{CP} , is a co-preLie (not counit) coalgebra ie Δ_{CP} satisfies the relation

$$(\Delta_\mathit{CP} \otimes \mathit{Id} - \mathit{Id} \otimes \Delta_\mathit{CP}) \circ \Delta_\mathit{CP}(\omega) = (\mathit{Id} \otimes \tau) \circ (\Delta_\mathit{CP} \otimes \mathit{Id} - \mathit{Id} \otimes \Delta_\mathit{CP}) \circ \Delta_\mathit{CP}(\omega)$$

Example

Let Γ be a finite or a countable connected graph and $\omega = w_1 \dots w_m$ be a walk in Γ . An extended admissible cut of ω is a sequence

$$1 \leq \mathit{l}_{1} < \mathit{l}_{1}' < \mathit{l}_{2} < \mathit{l}_{2}' < \dots < \mathit{l}_{s} < \mathit{l}_{s}' \leq \mathit{m}$$

satisfying that $\omega^{l_k l_k'}$ is an admissible cut of ω , for any $1 \le k \le s$. The set of extended admissible cuts of ω is denoted $EAdC(\omega)$.

We define the morphism of algebras Δ_H defined by:

$$\Delta_{H}: \left\{ \begin{array}{ccc} \mathcal{T}\langle \mathcal{W}(\Gamma) \rangle & \longrightarrow & \mathcal{T}\langle \mathcal{W}(\Gamma) \rangle \otimes \mathcal{T}\langle \mathcal{W}(\Gamma) \rangle \\ \omega & \mapsto & \Delta_{H}(\omega) = \omega \otimes 1 + 1 \otimes \omega \\ & + \sum_{c \in \textit{EAdC}(\omega)} \omega_{\textit{I}_{1}\textit{I}'_{1}, \ldots, \textit{I}_{\textit{S}}\textit{I}'_{\textit{S}}} \otimes \omega^{\textit{I}_{1}\textit{I}'_{1}} | \ldots | \omega^{\textit{I}_{\textit{S}}\textit{I}'_{\textit{S}}}, \end{array} \right.$$

where $\omega = w_1 \dots w_m$ is a walk in Γ , the extended admissible cut c is the sequence $1 \le l_1 < l_1' < \dots < l_s < l_s' \le m$ and the sum is taken over all the extended admissible cuts of ω .

Example

$$\Delta_{H} \begin{pmatrix} 2 & 3 & 4 \\ 1 & 5 & \end{pmatrix} = \begin{pmatrix} 2 & 3 & 4 \\ 1 & 5 & \end{pmatrix} \times 1$$

$$+ 1 \otimes \begin{pmatrix} 2 & 3 & 4 \\ 1 & 5 & \end{pmatrix} + \begin{pmatrix} 2 & 3 & 4 \\ 1 & 5 & \end{pmatrix} \times \begin{pmatrix} 2$$

Theorem (L. Foissy, P.L. Giscard, C. M., M. Ronco)

Let Γ a finite or countable connected graph. Consider the triple $(\mathcal{T}\langle \mathcal{W}(\Gamma)\rangle, \star, \Delta_H)$. It is a Hopf algebra.

Theorem (L. Foissy, P.L. Giscard, C. M., M. Ronco)

Let Γ a finite or countable connected graph. Consider the triple $(\mathcal{T}\langle \mathcal{W}(\Gamma) \rangle, \star, \Delta_H)$. It is a Hopf algebra.

Theorem (L. Foissy, P.L. Giscard, C. M., M. Ronco)

In the graph Γ , we denote by $\mathcal I$ the vector space spanned by the elements $\omega_1|\dots|\omega_s-\omega_{\sigma(1)}|\dots|\omega_{\sigma(s)}$ where $\omega_1|\dots|\omega_s\in\mathcal T\langle\mathcal W(\Gamma)\rangle$ and σ is a permutation. Then, $\mathcal I$ is a Hopf bi-ideal of $\mathcal T\langle\mathcal W(\Gamma)\rangle$. Thus, $(\mathcal S\langle\mathcal W(\Gamma)\rangle,\square,\Delta_H)$ is a quotient Hopf algebra of $\mathcal T\langle\mathcal W(\Gamma)\rangle$.

Let Γ be a finite or a countable connected graph and $\omega = w_1 \dots w_m$ be a walk in Γ such that $AdC(\omega) \neq \emptyset$. For any $(\omega^{kk'}, \omega^{ll'})$ in $AdC(\omega)^2$, the two following statements are equivalent:

- $\bullet \omega^{kk'} \leqslant \omega^{ll'}.$
- 2 $l \le k < k' \le l' \text{ or } k < k' < l < l'$.

Let Γ be a finite or a countable connected graph and $\omega = w_1 \dots w_m$ be a walk in Γ such that $AdC(\omega) \neq \emptyset$. For any $(\omega^{kk'}, \omega^{ll'})$ in $AdC(\omega)^2$, the two following statements are equivalent:

- $\bullet \omega^{kk'} \leqslant \omega^{ll'}.$
- 2 $l \le k < k' \le l'$ or k < k' < l < l'.

Example

Let consider the walk

Let $\psi^{35} = 555$, $\psi^{45} = 55$ and ψ^{11} $^{12} = 88$ be three elements in $AdC(\psi)$. Then, $\psi^{45} \leqslant \psi^{35} \leqslant \psi^{11}$ 12 .

Proposition (L. Foissy, P.L. Giscard, C. M., M. Ronco)

Let ω be a non-empty finite walk such that $AdC(\omega) \neq \emptyset$. Equipped with the relation \leq , the set $AdC(\omega)$ is a totally ordered set.

Proposition (L. Foissy, P.L. Giscard, C. M., M. Ronco)

Let ω be a non-empty finite walk such that $AdC(\omega) \neq \emptyset$. Equipped with the relation \leq , the set $AdC(\omega)$ is a totally ordered set.

Example

Consider the walk

Then

$$AdC(\psi) = \{ \psi^{45} \leqslant \psi^{35} \leqslant \psi^{78} \leqslant \psi^{68} \leqslant \psi^{28} \leqslant \psi^{11} \ ^{12} \leqslant \psi^{10} \ ^{13} \}.$$

Definition

Let ω be a non-empty finite walk, $AdC(\omega)$ be the set of its admissible cuts and $x(\omega) \in \mathbb{N}$ be the cardinality of $AdC(\omega)$. We assume $AdC(\omega) \neq \emptyset$. Let $s \in \{1,...,x\}$ be a positive integer and $(\omega^{l_1 l_1'}, \ldots, \omega^{l_s l_s'})$ be a s-tuple of distinct admissible cuts of ω such that $\omega^{l_1 l_1'} \leqslant \cdots \leqslant \omega^{l_s l_s'}$. We associate to this s-tuple a tensor $T_{l_1 l_1', \ldots, l_s l_s'}$ as follows:

$$T_{l_1 l'_1, \dots, l_s l'_s} = \omega_{l_1 l'_1, \dots, l_s l'_s} |\omega_{l_1 l'_1, \dots, l_{s-1} l'_{s-1}}^{l_s l'_s}| \cdots |\omega_{l_1 l'_1, \dots, l_{i-1} l'_{i-1}}^{l_i l'_i}| \cdots |\omega^{l_1 l'_1}.$$

Definition

Let ω be a non-empty finite walk, $AdC(\omega)$ be the set of its admissible cuts and $x(\omega) \in \mathbb{N}$ be the cardinality of $AdC(\omega)$. We assume $AdC(\omega) \neq \emptyset$. Let $s \in \{1,...,x\}$ be a positive integer and $(\omega^{l_1 l_1'}, \ldots, \omega^{l_s l_s'})$ be a s-tuple of distinct admissible cuts of ω such that $\omega^{l_1 l_1'} \leqslant \cdots \leqslant \omega^{l_s l_s'}$. We associate to this s-tuple a tensor $T_{l_1 l_1', \ldots, l_s l_s'}$ as follows:

$$T_{l_1 l'_1, \dots, l_s l'_s} = \omega_{l_1 l'_1, \dots, l_s l'_s} |\omega_{l_1 l'_1, \dots, l_{s-1} l'_{s-1}}^{l_s l'_s}| \cdots |\omega_{l_1 l'_1, \dots, l_{i-1} l'_{i-1}}^{l_i l'_i}| \cdots |\omega_{l_1 l'_1, \dots, l_{i-1} l'_{i-1}}^{l_1 l'_i}.$$

Theorem

Let Γ be a finite connected graph and ω a non-empty finite walk in Γ . Then, in $\mathcal{T}\langle \mathcal{W}(\Gamma) \rangle$, the antipode $S(\omega)$ calculated on ω is given by:

$$S(\omega) = -\omega - \sum_{s=1}^{\mathsf{x}(\omega)} \sum_{\substack{\omega'_1 l'_1 \leqslant \dots \leqslant \omega'_s l'_s \\ \forall i, \ \omega'_i l'_i \in \mathsf{AdC}(\omega) \\ \forall i \neq j, \ \omega'_i l'_j \neq \omega'_i l'_j}} (-1)^s \, T_{l_1 l'_1, \dots, l_s l'_s}$$

Example

Consider the walk $\kappa=12223445=$

$$S(\kappa) = -\kappa + \frac{2}{112435275} \begin{vmatrix} 3 \\ 5 \\ 7 \end{vmatrix} \begin{vmatrix} 3 \\ 2 \end{vmatrix} + \frac{2}{112435275} \begin{vmatrix} 6 \\ 4 \end{vmatrix} \begin{vmatrix} 2 \\ 3 \end{vmatrix} \begin{vmatrix} 3 \\ 7 \end{vmatrix} \begin{vmatrix} 6 \\ 4 \end{vmatrix} \begin{vmatrix} 2 \\ 3 \end{vmatrix} \end{vmatrix} + \frac{2}{112435275} \begin{vmatrix} 6 \\ 4 \end{vmatrix} \begin{vmatrix} 2 \\ 2 \end{vmatrix} \begin{vmatrix} 3 \\ 4 \end{vmatrix} \begin{vmatrix} 2 \\ 2 \end{vmatrix} \begin{vmatrix} 3 \\ 4 \end{vmatrix} \begin{vmatrix} 3 \\ 4 \end{vmatrix} \begin{vmatrix} 3 \\ 4 \end{vmatrix} \begin{vmatrix} 2 \\ 2 \end{vmatrix} \begin{vmatrix} 3 \\ 4 \end{vmatrix} \begin{vmatrix} 2 \\ 2 \end{vmatrix} \begin{vmatrix} 3 \\ 4 \end{vmatrix} \begin{vmatrix} 2 \\ 4 \end{vmatrix} \begin{vmatrix} 3 \\ 5 \end{vmatrix} \begin{vmatrix} 4 \\ 7 \end{vmatrix} \begin{vmatrix} 6 \\ 4 \end{vmatrix} \begin{vmatrix} 2 \\ 2 \end{vmatrix} \begin{vmatrix} 3 \\ 4 \end{vmatrix} \begin{vmatrix} 2 \\ 2 \end{vmatrix} \begin{vmatrix} 3 \\ 4 \end{vmatrix} \begin{vmatrix} 2 \\ 2 \end{vmatrix} \begin{vmatrix} 3 \\ 4 \end{vmatrix} \begin{vmatrix} 2 \\ 4 \end{vmatrix} \begin{vmatrix} 3 \\ 5 \end{vmatrix} \begin{vmatrix} 4 \\ 7 \end{vmatrix} \begin{vmatrix} 6 \\ 4 \end{vmatrix} \begin{vmatrix} 2 \\ 2 \end{vmatrix} \begin{vmatrix} 3 \\ 4 \end{vmatrix} \begin{vmatrix} 2 \\ 2 \end{vmatrix} \begin{vmatrix} 3 \\ 4 \end{vmatrix} \begin{vmatrix} 2 \\ 2 \end{vmatrix} \begin{vmatrix} 3 \\ 4 \end{vmatrix} \begin{vmatrix} 3 \\ 5 \end{vmatrix} \begin{vmatrix} 4 \\ 7 \end{vmatrix} \begin{vmatrix} 4 \\ 7 \end{vmatrix} \begin{vmatrix} 5 \\ 4 \end{vmatrix} \begin{vmatrix} 4 \\ 7 \end{vmatrix} \begin{vmatrix} 5 \\ 4 \end{vmatrix} \begin{vmatrix} 2 \\ 2 \end{vmatrix} \begin{vmatrix} 3 \\ 4 \end{vmatrix} \begin{vmatrix} 2 \\ 2 \end{vmatrix} \begin{vmatrix} 3 \\ 4 \end{vmatrix} \begin{vmatrix} 2 \\ 2 \end{vmatrix} \begin{vmatrix} 3 \\ 4 \end{vmatrix} \begin{vmatrix} 2 \\ 2 \end{vmatrix} \begin{vmatrix} 3 \\ 4 \end{vmatrix} \begin{vmatrix} 3 \\ 5 \end{vmatrix} \begin{vmatrix} 4 \\ 4 \end{vmatrix} \begin{vmatrix} 3 \\ 5 \end{vmatrix} \begin{vmatrix} 4 \\ 4 \end{vmatrix} \begin{vmatrix} 3 \\ 5 \end{vmatrix} \begin{vmatrix} 4 \\ 4 \end{vmatrix} \begin{vmatrix} 3 \\ 5 \end{vmatrix} \begin{vmatrix} 4 \\ 4 \end{vmatrix} \begin{vmatrix} 3 \\ 5 \end{vmatrix} \begin{vmatrix} 4 \\ 4 \end{vmatrix} \begin{vmatrix} 3 \\ 5 \end{vmatrix} \begin{vmatrix} 4 \\ 4 \end{vmatrix} \begin{vmatrix} 3 \\ 5 \end{vmatrix} \begin{vmatrix} 4 \\ 4 \end{vmatrix} \begin{vmatrix} 3 \\ 5 \end{vmatrix} \begin{vmatrix} 4 \\ 4 \end{vmatrix} \begin{vmatrix} 3 \\ 5 \end{vmatrix} \begin{vmatrix} 4 \\ 4 \end{vmatrix} \begin{vmatrix} 3 \\ 5 \end{vmatrix} \begin{vmatrix} 4 \\ 4 \end{vmatrix} \begin{vmatrix} 3 \\ 5 \end{vmatrix} \begin{vmatrix} 4 \\ 4 \end{vmatrix} \begin{vmatrix} 3 \\ 5 \end{vmatrix} \begin{vmatrix} 4 \\ 4 \end{vmatrix} \begin{vmatrix} 3 \\ 5 \end{vmatrix} \begin{vmatrix} 4 \\ 4 \end{vmatrix} \begin{vmatrix} 3 \\ 5 \end{vmatrix} \begin{vmatrix} 4 \\ 4 \end{vmatrix} \begin{vmatrix} 3 \\ 5 \end{vmatrix} \begin{vmatrix} 4 \\ 4 \end{vmatrix} \begin{vmatrix} 3 \\ 5 \end{vmatrix} \begin{vmatrix} 4 \\ 4 \end{vmatrix} \begin{vmatrix} 3 \\ 5 \end{vmatrix} \begin{vmatrix} 4 \\ 4 \end{vmatrix} \begin{vmatrix} 3 \\ 5 \end{vmatrix} \begin{vmatrix} 4 \\ 4 \end{vmatrix} \begin{vmatrix} 3 \\ 5 \end{vmatrix} \begin{vmatrix} 4 \\ 4 \end{vmatrix} \begin{vmatrix} 3 \\ 5 \end{vmatrix} \begin{vmatrix} 4 \\ 4 \end{vmatrix} \begin{vmatrix} 3 \\ 5 \end{vmatrix} \begin{vmatrix} 4 \\ 4 \end{vmatrix} \begin{vmatrix} 3 \\ 5 \end{vmatrix} \begin{vmatrix} 4 \\ 4 \end{vmatrix} \begin{vmatrix} 3 \\ 5 \end{vmatrix} \begin{vmatrix} 4 \\ 4 \end{vmatrix} \begin{vmatrix} 3 \\ 5 \end{vmatrix} \begin{vmatrix} 4 \\ 4 \end{vmatrix} \begin{vmatrix} 3 \\ 5 \end{vmatrix} \begin{vmatrix} 4 \\ 4 \end{vmatrix} \begin{vmatrix} 3 \\ 5 \end{vmatrix} \begin{vmatrix} 4 \\ 4 \end{vmatrix} \begin{vmatrix} 3 \\ 5 \end{vmatrix} \begin{vmatrix} 4 \\ 4 \end{vmatrix} \begin{vmatrix} 3 \\ 5 \end{vmatrix} \begin{vmatrix} 4 \\ 4 \end{vmatrix} \begin{vmatrix} 4 \\ 5 \end{vmatrix} \begin{vmatrix} 4 \\ 4 \end{vmatrix} \begin{vmatrix} 4 \\ 5 \end{vmatrix} \begin{vmatrix} 4 \\ 4 \end{vmatrix} \begin{vmatrix} 4 \\ 5 \end{vmatrix} \begin{vmatrix} 4 \\ 4 \end{vmatrix} \begin{vmatrix} 4 \\ 5 \end{vmatrix} \begin{vmatrix} 4 \\ 4 \end{vmatrix} \begin{vmatrix} 4 \\ 5 \end{vmatrix} \begin{vmatrix} 4 \\ 4 \end{vmatrix} \begin{vmatrix} 4 \\ 5 \end{vmatrix} \begin{vmatrix} 4 \\ 4 \end{vmatrix} \begin{vmatrix} 4 \\ 5 \end{vmatrix} \begin{vmatrix} 4 \\ 4 \end{vmatrix} \begin{vmatrix} 4 \\ 5 \end{vmatrix} \begin{vmatrix} 4 \\ 4 \end{vmatrix} \begin{vmatrix} 4 \\ 5 \end{vmatrix} \begin{vmatrix} 4 \\ 4 \end{vmatrix} \begin{vmatrix} 4 \\ 5 \end{vmatrix} \begin{vmatrix} 4 \\ 4 \end{vmatrix} \begin{vmatrix} 4 \\ 5 \end{vmatrix} \begin{vmatrix} 4 \\ 4 \end{vmatrix} \begin{vmatrix} 4 \\ 4 \end{vmatrix} \begin{vmatrix} 4 \\ 5 \end{vmatrix} \begin{vmatrix} 4 \\ 4 \end{vmatrix} \begin{vmatrix} 4 \end{vmatrix} \begin{vmatrix} 4 \\ 4 \end{vmatrix} \begin{vmatrix} 4 \end{vmatrix} \begin{vmatrix} 4 \\ 4 \end{vmatrix} \begin{vmatrix} 4 \end{vmatrix} \end{vmatrix} \begin{vmatrix} 4 \end{vmatrix}$$

Pre-Lie product

Pre-Lie product

The pre-Lie product on walks is given by the linear part in the dual product of Δ_H .

Pre-Lie product

The pre-Lie product on walks is given by the linear part in the dual product of Δ_{H} .

There are two terms in the result.

identity Reconstruction of the identity

Theorem (L. Foissy, P.L. Giscard, C. M., M. Ronco)

Let ω walk in a connected finite or countable graph Γ . There exists a unique integer p, a unique p-tuple $(\omega_1, \ldots, \omega_p)$ of walks such that:

$$\omega = Parentheses((\omega_1, \omega_2, \dots, \omega_p), \triangleright).$$

Besides:

- The reconstruction is essentially unique,
- $\mathbf{2} \ \omega_2, \ldots, \omega_p$ are simple cycles,
- **3** ω_1 is a self-avoiding walk or a simple cycle.

identity Reconstruction of the identity

Questions:

- **1** How find the integer p and the walks $\omega_1, \ldots, \omega_p$?
- How find the couples of parentheses?

Questions:

- How find the integer p and the walks $\omega_1, \ldots, \omega_p$?
- How find the couples of parentheses?

Answer: You have to use the total order \leq on the set $AdC(\omega)$.

Finally:

