

Combinatorics of nonbacktracking and non-cycling walks and their applications to network science

F. Arrigo, D. J. Higham and V. Noferini

WACA 2021 May 25 – 28, 2021

The importance of counting walks
Walk-based centrality
Question 1
Motivation
Problem setting
Four term recurrence
From A to B
Small example

Counting NBT walks

Problem setting

question 2

ABC . . . easy as 123 . . .

Counting non-*k*-cycling walks

- Graph G = (V, E) with n nodes and m edges, unweighted and w/o loops.
- Every undirected edge i j is regarded as: $i \rightarrow j$ and $j \rightarrow i$.

The importance of counting walks

Setup

The importance of counting walks

Walk-based centrality

Ouestion 1

Motivation

Problem setting

Four term recurrence

From A to B

Small example

Counting NBT walks

Problem setting

question 2

ABC . . . easy as

123 . . .

Counting

non-k-cycling walks

What else can we do?

A walk is any traversal of the network.

Adjacency matrix: $A = (a_{ij}) \in \mathbb{R}^{n \times n}$, $a_{ij} = 1$ iff $i \to j$.

$$A = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$

Easy: $(A^2)_{ij} = \sum_{k=1}^n a_{ik} a_{kj}$ counts walks of length two.

Generally: entries of A^r count walks of length r.

Counting walks is at the heart of several clustering and centrality algorithms!

Setup
The importance of counting walks

Walk-based centrality

Question 1

Motivation

Problem setting

Four term recurrence

From A to B

Small example

Counting NBT walks

Problem setting

question 2

ABC . . . easy as

123 . . .

Counting

non-k-cycling walks

What else can we do?

Let $f(x) = \sum_{r=0}^{\infty} c_r x^r$, then, within the radius of convergence:

$$f(A) = \sum_{r=0}^{\infty} c_r A^r$$

Looking closely at $(f(A))_{ij}$:

$$(f(A))_{ij} = \sum_{r=0}^{\infty} c_r (A^r)_{ij}$$

- \circ it tells us how many walks (up to infinite length) originate at node i and end at node j
- \circ if $c_r \geq 0$ and $c_r \rightarrow 0$ as $r \rightarrow \infty$, longer walks are given less weight.

Setup
The importance of counting walks

Walk-based centrality

Question 1
Motivation
Problem setting
Four term recurrence
From A to B
Small example
Counting NBT walks
Problem setting
question 2

ABC . . . easy as

non-k-cycling walks What else can we do?

123 . . . Countina

Centrality measures assign scores to nodes in graphs to quantify their importance.

Among the most popular centrality measures:

o f-subgraph centrality (SC)

$$\mathbf{x}(t)_i = \mathbf{e}_i^T \left(\sum_{r=0}^{\infty} \mathbf{c}_r t^r A^r \right) \mathbf{e}_i = f(A)_{ii}$$

o f-total (node) communicability (TC):

$$\mathbf{y}(t)_{i} = \sum_{j=1}^{n} \sum_{r=0}^{\infty} \frac{\mathbf{c}_{r}}{\mathbf{t}^{r}} (A^{r})_{ij} = \sum_{j=1}^{n} (f(A))_{ij} = (f(A)\mathbf{1})_{i}$$

The importance of counting walks

Setup
The importance of counting walks

Walk-based centrality

Ouestion 1

Motivation

Problem setting

Four term recurrence

From A to B

Small example

Counting NBT walks

Problem setting

question 2

ABC . . . easy as

123 . . .

Counting

non-k-cycling walks

What else can we do?

Katz centrality: row sums of $I + tA + t^2A^2 + t^3A^3 + \cdots$, i.e.:

$$\mathbf{k} = (I - tA)^{-1} \mathbf{1}, \quad \text{for } 0 < t < \rho(A)^{-1}.$$

⇒ Solve a sparse linear system!

Same importance to these walks of length four:

$$1 \rightarrow 4 \rightarrow 2 \rightarrow 3 \rightarrow 1$$

$$1 \rightarrow 4 \rightarrow 1 \rightarrow 4 \rightarrow 1$$
.

... but the first visits the network more thoroughly.

KATZ, "A new status index derived from sociometric analysis", Psychometrika (1953).

Setup
The importance of counting walks

Walk-based centrality

Question 1
Motivation
Problem setting
Four term recurrence
From A to B
Small example
Counting NBT walks
Problem setting
question 2
ABC... easy as
123...

non-k-cycling walks
What else can we do?

Counting

A walk (of length r-1) is any traversal of the network:

$$\underline{i} = (i_1, i_2, \dots, i_r)$$
 or $i_1 \rightarrow i_2 \rightarrow \dots \rightarrow i_r$.

A walk is said to be **non-backtracking (NBT)** if it <u>does not</u> contain any instance of the form $i \rightarrow j \rightarrow i$.

Setup
The importance of counting walks

Walk-based centrality

Question 1
Motivation
Problem setting
Four term recurrence
From A to B
Small example
Counting NBT walks
Problem setting

question 2

ABC ... easy as
123 ...

Counting

non-k-cycling walks What else can we do?

A walk (of length r-1) is any traversal of the network:

$$\underline{i} = (i_1, i_2, \dots, i_r)$$
 or $i_1 \rightarrow i_2 \rightarrow \dots \rightarrow i_r$.

A walk is said to be **non-backtracking (NBT)** if it <u>does not</u> contain any instance of the form $i \rightarrow j \rightarrow i$.

$$1 \rightarrow 4 \rightarrow 2 \rightarrow 3 \rightarrow 1$$
 is NBT $1 \rightarrow 4 \rightarrow 1 \rightarrow 4 \rightarrow 1$ is backtracking.

Setup
The importance of counting walks
Walk-based centrality

Question 1

Motivation
Problem setting
Four term recurrence
From A to B
Small example
Counting NBT walks
Problem setting
question 2
ABC... easy as
123...
Counting
non-k-cycling walks
What else can we do?

Question:

 Can we define NBTW-based subgraph centrality and total communicability indices, using entries or sum of entries of

$$c_0p_0(A) + c_1tp_1(A) + c_2t^2p_2(A) + c_3t^3p_3(A) + \cdots$$

where $p_r(A)$ generalizes A^r to the NBT setting, i.e., it counts NBTWs of length r, and t > 0 is selected so that the series converges.

Setup
The importance of counting walks
Walk-based centrality
Question 1

Motivation

Problem setting
Four term recurrence
From A to B
Small example
Counting NBT walks
Problem setting
question 2
ABC... easy as
123...
Counting
non-k-cycling walks

What else can we do?

Non-backtracking walks have been suggested and analyzed in a wide range of fields including (but not limited to!)

- spectral graph theory [Angel, Friedman, Hoory, Horton, Stark, Terras, ...],
- number theory [Terras, ...],
- discrete mathematics [Bowen, Lanford, Stark, Terras, ...],
- stochastic analysis [Alon, Benjamini,Lubetzky, Sodin, ...],
- applied linear algebra [Tarfulea, Perlis, ...],
- computer science [Zaade, Krzakala, Zdeborová],
- ..

Setup
The importance of counting walks
Walk-based centrality
Question 1

Motivation

Problem setting
Four term recurrence
From A to B
Small example
Counting NBT walks
Problem setting
question 2
ABC... easy as
123...
Counting
non-k-cycling walks

What else can we do?

Non-backtracking walks have been suggested and analyzed in a wide range of fields including (but not limited to!)

- spectral graph theory [Angel, Friedman, Hoory, Horton, Stark, Terras, ...],
- number theory [Terras, ...],
- discrete mathematics [Bowen, Lanford, Stark, Terras, ...],
- stochastic analysis [Alon, Benjamini,Lubetzky, Sodin, ...],
- applied linear algebra [Tarfulea, Perlis, ...],
- computer science [Zaade, Krzakala, Zdeborová],
- ...

In Network Science:

- finding communities [Kawamoto, Krzakala, Moore, Mossel, Zhang,...];
- assigning centrality values to nodes [Martin, Zhang, Newman, Pastor-Satorras, Castellano, Flores, Criado, and many others].

Setup
The importance of counting walks
Walk-based centrality
Ouestion 1

Motivation

Problem setting
Four term recurrence
From A to B
Small example
Counting NBT walks
Problem setting
question 2
ABC... easy as
123...
Counting
non-k-cycling walks

- NBTWs visit the network more thoroughly;
- NBTW-based measures avoid localization;
- They can be computed at the same (or lower) computational costs;
- Larger radius of convergence;
- High versatility from the viewpoint of Linear Algebra

Setup
The importance of counting walks
Walk-based centrality

Question 1

Motivation

Problem setting

Four term recurrence

From A to B

Small example

Counting NBT walks

Problem setting

question 2

ABC . . . easy as

123 . . .

Counting

non-k-cycling walks

Let
$$p_r(A) \in \mathbb{R}^{n \times n}$$
 be such that

$$(p_r(A))_{ij} = |\{NBTW \text{ s of length } r \text{ from node } i \text{ to node } j\}|.$$

Setup
The importance of counting walks
Walk-based centrality
Question 1
Motivation

Problem setting

Four term recurrence
From A to B
Small example
Counting NBT walks
Problem setting
question 2
ABC... easy as
123...
Counting
non-k-cycling walks
What else can we do?

Let $p_r(A) \in \mathbb{R}^{n \times n}$ be such that

 $(p_r(A))_{ij} = |\{NBTW \text{ s of length } r \text{ from node } i \text{ to node } j\}|.$

Given $f(A) = \sum_{r=0}^{\infty} c_r t^r A^r$, let the non-backtracking counterpart of the matrix function f(A) be:

$$F(A) := \sum_{r=0}^{\infty} c_r t^r p_r(A).$$

Setup
The importance of counting walks
Walk-based centrality
Question 1
Motivation

Problem setting

Four term recurrence
From A to B
Small example
Counting NBT walks
Problem setting
question 2
ABC... easy as
123...
Counting
non-k-cycling walks
What else can we do?

Let $p_r(A) \in \mathbb{R}^{n \times n}$ be such that

 $(p_r(A))_{ij} = |\{NBTW \text{ s of length } r \text{ from node } i \text{ to node } j\}|.$

Given $f(A) = \sum_{r=0}^{\infty} c_r t^r A^r$, let the non-backtracking counterpart of the matrix function f(A) be:

$$F(A) := \sum_{r=0}^{\infty} c_r t^r p_r(A).$$

Define the *NBTW-based SC* of node *i* as:

$$\mathbf{x}_2(i) = (F(A))_{ii}$$

and the *NBTW-based TC* of node *i* as:

$$y_2(i) = (F(A)1)_i$$
.

Setup
The importance of counting walks
Walk-based centrality

Question 1

Motivation

Problem setting

Four term recurrence

From A to B

Small example

Counting NBT walks

Problem setting

question 2

ABC... easy as

123...

Counting

non-k-cycling walks

What else can we do?

Theorem: Let A be the adj. matrix of an unweighted digraph, $D = \text{diag}(\text{diag}(A^2))$, and $N = A - A \circ A^T$. Then,

$$p_0(A) = I,$$

 $p_1(A) = A,$
 $p_2(A) = A^2 - D$

and

$$p_r(A) = p_{r-1}(A)A + p_{r-2}(A)(I-D) - p_{r-3}(A)N, \quad \forall r \ge 3.$$

Tarfulea & Perris, "An Ihara formula for partially directed graphs", LAA (2009).

Setup
The importance of counting walks
Walk-based centrality

Question 1

Motivation

Problem setting

Four term recurrence

From A to B

Small example

Counting NBT walks

Problem setting

question 2

ABC ... easy as

123 ...

Counting

non-k-cycling walks

What else can we do?

$$p_{r+3}(A) = p_{r+2}(A)A + p_{r+1}(A)(I-D) - p_r(A)N.$$

$$(p_{r+3}(A))_{ij} = i \rightarrow \cdots \rightarrow * \rightarrow * \rightarrow * \rightarrow j$$

$$+(p_{r+2}(A)A)_{ij} \qquad i \rightarrow \cdots \rightarrow * \rightarrow * \rightarrow ! \rightarrow j$$

Setup
The importance of

Walk-based centrality

Question 1

Motivation

Problem setting

counting walks

Four term recurrence

From A to B

Small example

Counting NBT walks

Problem setting

question 2

ABC . . . easy as

123...

Counting

non-k-cycling walks

What else can we do?

$$p_{r+3}(A) = p_{r+2}(A)A + p_{r+1}(A)(I-D) - p_r(A)N.$$

$$(p_{r+3}(A))_{ij} = i \rightarrow \cdots \rightarrow * \rightarrow * \rightarrow * \rightarrow j$$

$$+(p_{r+2}(A)A)_{ij} \qquad i \rightarrow \cdots \rightarrow * \rightarrow * \rightarrow \ell \rightarrow j$$

$$-(p_{r+1}(A)D)_{ij} \qquad i \rightarrow \cdots \rightarrow * \rightarrow j \rightarrow \ell \rightarrow j$$

Setup

The importance of counting walks

Walk-based centrality

Question 1

Motivation

Problem setting

Four term recurrence

From A to B

Small example

Counting NBT walks

Problem setting

question 2

ABC... easy as

123...

Counting

non-k-cycling walks
What else can we do?

$$p_{r+3}(A) = p_{r+2}(A)A + p_{r+1}(A)(I-D) - p_r(A)N.$$

$$(p_{r+3}(A))_{ij} = i \rightarrow \cdots \rightarrow \star \rightarrow \star \rightarrow \star \rightarrow j$$

$$+(p_{r+2}(A)A)_{ij} \qquad i \rightarrow \cdots \rightarrow \star \rightarrow \star \rightarrow \ell \rightarrow j$$

$$-(p_{r+1}(A)D)_{ij} \qquad i \rightarrow \cdots \rightarrow \star \rightarrow j \rightarrow \ell \rightarrow j$$

$$+(p_{r+1}(A))_{ij} \qquad i \rightarrow \cdots \rightarrow \ell \rightarrow j \rightarrow \ell \rightarrow j$$

Setup
The importance of counting walks
Walk-based centrality
Question 1

Motivation
Problem setting

Four term recurrence

From A to B

Small example

Counting NBT walks

Problem setting

question 2

ABC... easy as

123...

Counting

non-k-cycling walks

What else can we do?

$$p_{r+3}(A) = p_{r+2}(A)A + p_{r+1}(A)(I-D) - p_r(A)N.$$

$$(p_{r+3}(A))_{ij} = i \rightarrow \cdots \rightarrow * \rightarrow * \rightarrow * \rightarrow j$$

$$+(p_{r+2}(A)A)_{ij} \qquad i \rightarrow \cdots \rightarrow * \rightarrow * \rightarrow \ell \rightarrow j$$

$$-(p_{r+1}(A)D)_{ij} \qquad i \rightarrow \cdots \rightarrow * \rightarrow j \rightarrow \ell \rightarrow j$$

$$+(p_{r+1}(A))_{ij} \qquad i \rightarrow \cdots \rightarrow \ell \rightarrow j \rightarrow \ell \rightarrow j$$

$$-(p_r(A)N)_{ij} \qquad \text{it must hold } j \leftrightarrow \ell$$

Example: Katz centrality

Setup
The importance of counting walks
Walk-based centrality
Question 1

Four term recurrence

Motivation

Problem setting

From A to B

Small example

Counting NBT walks

Problem setting

question 2

ABC... easy as

123...

Counting

non-k-cycling walks

What else can we do?

The non-backtracking analogue of Katz centrality is:

$$\mathbf{k}_{NBT} := F(A)\mathbf{1} = \sum_{r=0}^{\infty} t^r p_r(A)\mathbf{1}.$$

Theorem: Let A, N, and D be defined as before. Moreover, if we use $c_r = 1$ and t > 0 is such that $F(A) = \sum_{r=0}^{\infty} t^r p_r(A)$ converges, then

$$[I - At + (D - I)t^{2} + Nt^{3}]F(A) = (1 - t^{2})I$$

Example: Katz centrality

Setup
The importance of counting walks
Walk-based centrality
Question 1
Motivation

Four term recurrence

Problem setting

From A to B

Small example

Counting NBT walks

Problem setting

question 2

ABC... easy as

123...

Counting

non-k-cycling walks

What else can we do?

The non-backtracking analogue of Katz centrality is:

$$\mathbf{k}_{NBT} := F(A)\mathbf{1} = \sum_{r=0}^{\infty} t^r p_r(A)\mathbf{1}.$$

Theorem: Let A, N, and D be defined as before. Moreover, if we use $c_r = 1$ and t > 0 is such that $F(A) = \sum_{r=0}^{\infty} t^r p_r(A)$ converges, then

$$[I - At + (D - I)t^{2} + Nt^{3}]F(A) = (1 - t^{2})I$$

$$\mathbf{k}_{NBT} = (1 - t^2)[I - At + (D - I)t^2 + Nt^3]^{-1}\mathbf{1}$$

 \Longrightarrow same cost as Katz.

The importance of counting walks

Walk-based centrality

Ouestion 1

Motivation

Problem setting

Four term recurrence

From A to B

Small example

Counting NBT walks

Problem setting

question 2

ABC . . . easy as 123 . . .

Counting

non-k-cycling walks

What else can we do?

- $\blacksquare \quad i-j \quad \Leftrightarrow \quad i \to j \text{ and } j \to i$
- G = (V, E) with $n = m_1$ nodes and m_2 edges;
- Adjacency matrix: $A = W_1 = P_1$;
- Source and target matrices: $L_1, R_1 \in \mathbb{R}^{m_2 \times m_1}$ of P_1 :

$$(L_1)_{\underline{i}\ell} = \left\{ \begin{array}{l} 1 & \text{if } i_1 = \ell \\ 0 & \text{otherwise} \end{array} \right.$$
 and $(R_1)_{\underline{i}\ell} = \left\{ \begin{array}{l} 1 & \text{if } i_2 = \ell \\ 0 & \text{otherwise} \end{array} \right.$

- $W_2 = R_1 L_1^T;$
- **■** Hashimoto matrix:

$$B=P_2=W_2-\Delta_2$$

The importance of counting walks
Walk-based centrality

Question 1

Motivation

Problem setting

Four term recurrence

From A to B

Small example

Counting NBT walks

Problem setting

question 2

ABC ... easy as

Counting

non-k-cycling walks

What else can we do?

- $\blacksquare \quad i-j \quad \Leftrightarrow \quad i \to j \text{ and } j \to i$
- \blacksquare G = (V, E) with $n = m_1$ nodes and m_2 edges;
- Adjacency matrix: $A = W_1 = P_1$;
- Source and target matrices: L_1 , $R_1 \in \mathbb{R}^{m_2 \times m_1}$ of P_1 :

$$(L_1)_{\underline{i}\ell} = \left\{ \begin{array}{ll} 1 & \text{if } i_1 = \ell \\ 0 & \text{otherwise} \end{array} \right. \quad \text{and} \quad (R_1)_{\underline{i}\ell} = \left\{ \begin{array}{ll} 1 & \text{if } i_2 = \ell \\ 0 & \text{otherwise} \end{array} \right.$$

- $W_2 = R_1 L_1^T;$
- **■** Hashimoto matrix:

$$B=P_2=W_2-\Delta_2$$

The importance of counting walks
Walk-based centrality

Question 1

Motivation

Problem setting

Four term recurrence

From A to B

Small example

Counting NBT walks

Problem setting

question 2

ABC . . . easy as

Counting

non-k-cycling walks

What else can we do?

- $\blacksquare \quad i-j \quad \Leftrightarrow \quad i \to j \text{ and } j \to i$
- G = (V, E) with $n = m_1$ nodes and m_2 edges;
- Adjacency matrix: $A = W_1 = P_1$;
- Source and target matrices: L_1 , $R_1 \in \mathbb{R}^{m_2 \times m_1}$ of P_1 :

$$(L_1)_{\underline{i}\ell} = \left\{ \begin{array}{ll} 1 & \text{if } i_1 = \ell \\ 0 & \text{otherwise} \end{array} \right. \quad \text{and} \quad (R_1)_{\underline{i}\ell} = \left\{ \begin{array}{ll} 1 & \text{if } i_2 = \ell \\ 0 & \text{otherwise} \end{array} \right.$$

- $W_2 = R_1 L_1^T$;
- **■** Hashimoto matrix:

$$B = P_2 = W_2 - \Delta_2,$$

The importance of counting walks
Walk-based centrality
Ouestion 1

Motivation

Problem setting

Four term recurrence

From A to B

Small example

Counting NBT walks

Problem setting

question 2

ABC . . . easy as 123 . . .

Counting

non-k-cycling walks

What else can we do?

- $\blacksquare \quad i-j \quad \Leftrightarrow \quad i \to j \text{ and } j \to i$
- G = (V, E) with $n = m_1$ nodes and m_2 edges;
- Adjacency matrix: $A = W_1 = P_1$;
- Source and target matrices: $L_1, R_1 \in \mathbb{R}^{m_2 \times m_1}$ of P_1 :

$$(L_1)_{\underline{i}\ell} = \left\{ \begin{array}{ll} 1 & \text{if } i_1 = \ell \\ 0 & \text{otherwise} \end{array} \right. \quad \text{and} \quad (R_1)_{\underline{i}\ell} = \left\{ \begin{array}{ll} 1 & \text{if } i_2 = \ell \\ 0 & \text{otherwise} \end{array} \right.$$

- $W_2 = R_1 L_1^T$;
- Hashimoto matrix:

$$B=P_2=W_2-\Delta_2,$$

From A to B (cont.)

Setup

The importance of counting walks

Walk-based centrality

Question 1

Motivation

Problem setting

Four term recurrence

From A to B

Small example

Counting NBT walks

Problem setting

question 2

ABC . . . easy as

123...

Counting

non-k-cycling walks

What else can we do?

We want to concatenate $\underline{i} = (i_1, i_2)$ and $\underline{j} = (j_1, j_2)$ without them backtracking:

$$i_1 \rightarrow i_2 = j_1 \rightarrow j_2$$
 and $i_1 \neq j_2$

The importance of counting walks

Walk-based centrality

Ouestion 1

Motivation

Problem setting

Four term recurrence

From A to B

Small example

Counting NBT walks

Problem setting

question 2

ABC . . . easy as

123 . . .

Counting

non-k-cycling walks

What else can we do?

We want to concatenate $\underline{i} = (i_1, i_2)$ and $\underline{j} = (j_1, j_2)$ without them backtracking:

$$i_1 \rightarrow i_2 = j_1 \rightarrow j_2$$
 and $i_1 \neq j_2$

Entrywise it holds:

$$(W_2)_{\underline{i}\underline{j}} = (R_1 L_1^T)_{\underline{i}\underline{j}} = \delta_{i_2j_1}$$

$$(P_2)_{\underline{i}\underline{j}} = (W_2 - W_2 \circ W_2^T)_{\underline{i}\underline{j}} = \delta_{i_2j_1}(1 - \delta_{i_1j_2})$$

since

$$(W_2 \circ W_2^{\mathsf{T}})_{\underline{i}\underline{j}} = (W_2)_{\underline{i}\underline{j}} (W_2)_{\underline{j}\underline{i}} = \delta_{i_2j_1} \delta_{j_2i_1}$$

where δ is the Kronecker delta.

Setup

The importance of counting walks

Walk-based centrality

Question 1

Motivation

Problem setting

Four term recurrence

From A to B

Small example

Counting NBT walks

Problem setting

question 2

ABC . . . easy as

123 . . .

Counting

non-k-cycling walks

Setup

The importance of counting walks

Walk-based centrality

Question 1

Motivation

Problem setting

Four term recurrence

From A to B

Small example

Counting NBT walks

Problem setting

question 2

ABC . . . easy as

123...

Counting

non-k-cycling walks

Setup

The importance of counting walks

Walk-based centrality

Question 1

Motivation

Problem setting

Four term recurrence

From A to B

Small example

Counting NBT walks

Problem setting

question 2

ABC . . . easy as

123...

Counting

non-k-cycling walks

Setup

The importance of counting walks

Walk-based centrality

Question 1

Motivation

Problem setting

Four term recurrence

From A to B

Small example

Counting NBT walks

Problem setting

question 2

ABC . . . easy as

123...

Counting

non-k-cycling walks

Counting NBT walks

Setup

The importance of counting walks

Walk-based centrality

Question 1

Motivation

Problem setting

Four term recurrence

From A to B

Small example

Counting NBT walks

Problem setting

question 2

ABC . . . easy as

123...

Counting

non-k-cycling walks

What else can we do?

It can be shown that

$$L_1^T(B^r)R_1 = L_1^T(P_2^r)R_1 = p_{r+1;2}(A)$$

Counting NBT walks

Setup

The importance of counting walks

Walk-based centrality

Ouestion 1

Motivation

Problem setting

Four term recurrence

From A to B

Small example

Counting NBT walks

Problem setting question 2

ABC . . . easy as

123 . . . Counting

non-k-cycling walks

What else can we do?

It can be shown that

$$L_1^T(B^r)R_1 = L_1^T(P_2^r)R_1 = p_{r+1;2}(A)$$

and moreover, within the radius of convergence,

$$\mathbf{x}_{2}(t)_{i} = (L_{1}^{T} \partial f(tP_{2})R_{1})_{ii}$$
 and $\mathbf{y}_{2}(t)_{i} = (L_{1}^{T} \partial f(tP_{2})\mathbf{1})_{i}$

where

$$f(z) = \sum_{r=0}^{\infty} c_r z^r$$
 and $\partial f(z) := \sum_{r=0}^{\infty} c_{r+1} z^r$

The importance of counting walks

Walk-based centrality

Question 1

Motivation

Problem setting

Four term recurrence

From A to B

Small example

Counting NBT walks

Problem setting

question 2

ABC . . . easy as 123 . . .

Counting

non-k-cycling walks

What else can we do?

Let $p_{r;k}(A)$ entrywise defined as

$$(p_{r;k}(A))_{ij} = \#\{(i_1 = i, \dots, i_{r+1} = j) \mid \text{w/o cycles of length} \le k\}$$

The importance of counting walks

Walk-based centrality

Ouestion 1

Motivation

Problem setting

Four term recurrence

From A to B

Small example

Counting NBT walks

Problem setting

question 2

ABC ... easy as
123 ...

Counting

non-k-cycling walks What else can we do?

Let $p_{r;k}(A)$ entrywise defined as

$$(p_{r;k}(A))_{ij} = \#\{(i_1 = i, \dots, i_{r+1} = j) \mid \text{w/o cycles of length} \le k\}$$

Given $f(A) = \sum_{r=0}^{\infty} c_r t^r A^r$, let the non-k-cylcing counterpart of the matrix function f(A) be:

$$F_k(A) := \sum_{r=0}^{\infty} c_r t^r p_{r;k}(A).$$

The importance of counting walks

Walk-based centrality

Ouestion 1

Motivation

Problem setting

Four term recurrence

From A to B

Small example

Counting NBT walks

Problem setting

question 2 *ABC* . . . ea

ABC . . . easy as 123 . . .

Counting

non-k-cycling walks

What else can we do?

Let $p_{r;k}(A)$ entrywise defined as

$$(p_{r,k}(A))_{ij} = \#\{(i_1 = i, \dots, i_{r+1} = j) \mid \text{w/o cycles of length} \le k\}$$

Given $f(A) = \sum_{r=0}^{\infty} c_r t^r A^r$, let the non-k-cylcing counterpart of the matrix function f(A) be:

$$F_k(A) := \sum_{r=0}^{\infty} c_r t^r p_{r;k}(A).$$

Define the *non-k-cycling SC* of node i as:

$$\mathbf{x}_k(i) = (F_k(A))_{ii}$$

and the non-k-cycling TC of node i as:

$$\mathbf{y}_k(i) = (F_k(A)\mathbf{1})_i.$$

The importance of counting walks

Walk-based centrality

Question 1

Motivation

Problem setting

Four term recurrence

From A to B

Small example

Counting NBT walks

Problem setting

question 2

ABC... easy as 123... Counting

non-k-cycling walks

What else can we do?

Question: Can we define define non-k-cycling subgraph centrality and total communicability indices, using entries or sum of entries of

$$c_0p_{0;k}(A) + c_1tp_{1;k}(A) + c_2t^2p_{2;k}(A) + c_3t^3p_{3;k}(A) + \cdots$$

where $p_{r;k}(A)$ generalizes A^r to the non-k-cycling setting and t > 0 is selected so that the series converges.

$$\mathbf{x}_{k}(t)_{i} = \left(\sum_{r=0}^{\infty} c_{r} t^{r} p_{r;k}(A)\right)_{ii}$$

and

$$\mathbf{y}_k(t)_i = \left(\sum_{r=0}^{\infty} c_r t^r p_{r;k}(A)\mathbf{1}\right)_i$$

The importance of counting walks

Walk-based centrality

Ouestion 1

Motivation

Problem setting

Four term recurrence

From A to B

Small example

Counting NBT walks

Problem setting

question 2

ABC . . . easy as 123 . . .

Counting non-k-cycling walks
What else can we do?

- For k = 2, 3, ..., given $P_{k-1} \in \mathbb{R}^{m_{k-1} \times m_{k-1}}$
- Source and target matrices L_{k-1} , $R_{k-1} \in \mathbb{R}^{m_k \times m_{k-1}}$ of P_{k-1} :

$$(L_{k-1})_{\underline{i\ell}} = \begin{cases} 1 & \text{if } i_j = \ell_j \text{ for } j = 1, \dots, k-1 \\ 0 & \text{otherwise} \end{cases}$$

$$(R_{k-1})_{\underline{i\ell}} = \begin{cases} 1 & \text{if } i_{j+1} = \ell_j \text{ for } j = 1, \dots, k-1 \\ 0 & \text{otherwise} \end{cases}$$

- $W_k = R_{k-1} L_{k-1}^T$ (kth order De Bruijn graphs of paths in the network.)
- Non-*k*-cycling matrix

$$P_k = W_k - \Delta_k,$$

where
$$\Delta_k = W_k \circ (W_k^T)^{k-1}$$

The importance of counting walks

Walk-based centrality

Ouestion 1

Motivation

Problem setting

Four term recurrence

From A to B

Small example

Counting NBT walks

Problem setting

question 2

ABC . . . easy as 123 . . .

Counting non-*k*-cycling walks

- For k = 2, 3, ..., given $P_{k-1} \in \mathbb{R}^{m_{k-1} \times m_{k-1}}$
- Source and target matrices L_{k-1} , $R_{k-1} \in \mathbb{R}^{m_k \times m_{k-1}}$ of P_{k-1} :

$$(L_{k-1})_{\underline{i\ell}} = \begin{cases} 1 & \text{if } i_j = \ell_j \text{ for } j = 1, \dots, k-1 \\ 0 & \text{otherwise} \end{cases}$$

$$(R_{k-1})_{\underline{i\ell}} = \begin{cases} 1 & \text{if } i_{j+1} = \ell_j \text{ for } j = 1, \dots, k-1 \\ 0 & \text{otherwise} \end{cases}$$

- $W_k = R_{k-1}L_{k-1}^T$ (kth order De Bruijn graphs of paths in the network.)
- Non-*k*-cycling matrix

$$P_k = W_k - \Delta_k,$$

where
$$\Delta_k = W_k \circ (W_k^T)^{k-1}$$

The importance of counting walks

Walk-based centrality

Ouestion 1

Motivation

Problem setting

Four term recurrence

From A to B

Small example

Counting NBT walks

Problem setting

question 2

ABC . . . easy as 123 . . .

Counting non-k-cycling walks
What else can we do?

- For k = 2, 3, ..., given $P_{k-1} \in \mathbb{R}^{m_{k-1} \times m_{k-1}}$
- Source and target matrices L_{k-1} , $R_{k-1} \in \mathbb{R}^{m_k \times m_{k-1}}$ of P_{k-1} :

$$(L_{k-1})_{\underline{i\ell}} = \begin{cases} 1 & \text{if } i_j = \ell_j \text{ for } j = 1, \dots, k-1 \\ 0 & \text{otherwise} \end{cases}$$

$$(R_{k-1})_{\underline{i\ell}} = \begin{cases} 1 & \text{if } i_{j+1} = \ell_j \text{ for } j = 1, \dots, k-1 \\ 0 & \text{otherwise} \end{cases}$$

- $W_k = R_{k-1}L_{k-1}^T$ (kth order De Bruijn graphs of paths in the network.)
- Non-*k*-cycling matrix

$$P_k = W_k - \Delta_k$$

where
$$\Delta_k = W_k \circ (W_k^T)^{k-1}$$

The importance of counting walks

Walk-based centrality

Ouestion 1

Motivation

Problem setting

Four term recurrence

From A to B

Small example

Counting NBT walks

Problem setting

question 2

ABC . . . easy as 123 . . .

Counting non-k-cycling walks

- For k = 2, 3, ..., given $P_{k-1} \in \mathbb{R}^{m_{k-1} \times m_{k-1}}$
- Source and target matrices L_{k-1} , $R_{k-1} \in \mathbb{R}^{m_k \times m_{k-1}}$ of P_{k-1} :

$$(L_{k-1})_{\underline{i\ell}} = \begin{cases} 1 & \text{if } i_j = \ell_j \text{ for } j = 1, \dots, k-1 \\ 0 & \text{otherwise} \end{cases}$$

$$(R_{k-1})_{\underline{i\ell}} = \begin{cases} 1 & \text{if } i_{j+1} = \ell_j \text{ for } j = 1, \dots, k-1 \\ 0 & \text{otherwise} \end{cases}$$

- $W_k = R_{k-1} L_{k-1}^T$ (kth order De Bruijn graphs of paths in the network.)
- Non-*k*-cycling matrix

$$P_k = W_k - \Delta_k$$

where
$$\Delta_k = W_k \circ (W_k^T)^{k-1}$$

Setup
The importance of

counting walks

Walk-based centrality

Ouestion 1

Motivation

Problem setting

Four term recurrence

From A to B

Small example

Counting NBT walks

Problem setting

question 2

ABC . . . easy as 123 . . .

Counting non-k-cycling walks

What else can we do?

We want to concatenate $\underline{i} = (i_1, i_2, \dots, i_k)$ and $\underline{j} = (j_1, j_2, \dots, j_k)$ without them closing a k-cycle:

$$i_1 \rightarrow i_2 = j_1 \rightarrow i_3 = j_2 \rightarrow \cdots \rightarrow i_k = j_{k-1} \rightarrow j_k$$

and

$$i_1 \neq j_k$$

The importance of counting walks

Walk-based centrality

Ouestion 1

Motivation

Problem setting

Four term recurrence

From A to B

Small example

Counting NBT walks

Problem setting question 2

 $ABC \dots$ easy as

123 . . .

Counting non-k-cycling walks
What else can we do?

We want to concatenate $\underline{i} = (i_1, i_2, \dots, i_k)$ and $\underline{j} = (j_1, j_2, \dots, j_k)$ without them closing a k-cycle:

$$i_1 \rightarrow i_2 = j_1 \rightarrow i_3 = j_2 \rightarrow \cdots \rightarrow i_k = j_{k-1} \rightarrow j_k$$

and

$$i_1 \neq j_k$$

$$(W_k)_{\underline{i}\underline{j}} = (R_{k-1}L_{k-1}^T)_{\underline{i}\underline{j}} = \begin{cases} 1 & \text{if } i_{\ell+1} = j_{\ell} \text{ for } \ell = 1, \dots, k-1 \\ 0 & \text{otherwise} \end{cases}$$

$$(P_k)_{\underline{i}\underline{j}} = (W_k - W_k \circ (W_k^T)^{k-1})_{\underline{i}\underline{j}} = \prod_{\ell=1}^{k-1} \delta_{i_{\ell+1},j_{\ell}} (1 - \delta_{i_1j_k})$$

since

$$(W_k^T)_{\underline{i}\underline{j}}^{k-1} = \delta_{i_1j_k}$$

where δ is the Kronecker delta.

Small example

Setup

The importance of counting walks

Walk-based centrality

Question 1

Motivation

Problem setting

Four term recurrence

From A to B

Small example

Counting NBT walks

Problem setting

question 2

ABC . . . easy as 123 . . .

Counting

non-k-cycling walks

Small example

Setup

The importance of counting walks

Walk-based centrality

Question 1

Motivation

Problem setting

Four term recurrence

From A to B

Small example

Counting NBT walks

Problem setting

question 2

ABC . . . easy as

123...

Counting non-k-cycling walks

Counting non-*k*-cycling walks

Setup

The importance of counting walks

Walk-based centrality

Ouestion 1

Motivation

Problem setting

Four term recurrence

From A to B

Small example

Counting NBT walks

Problem setting

question 2

ABC . . . easy as

123 . . .

Counting non-k-cycling walks

What else can we do?

It can be shown that

$$\mathcal{L}_{k-1}^{T}(P_{k}^{r})\mathcal{R}_{k-1} = p_{r+k-1;k}(A)$$

where

$$\mathcal{L}_{k-1} = L_1 L_2 \cdots L_{k-1}$$
 and $\mathcal{R}_{k-1} = R_1 R_2 \cdots R_{k-1}$

and moreover, within the radius of convergence,

$$\mathbf{x}_k(t)_i = (\mathcal{L}_{k-1}^T \partial^{k-1} f(tP_k) \mathcal{R}_{k-1})_{ii}$$
 and $\mathbf{y}_k(t)_i = (\mathcal{L}_{k-1}^T \partial^{k-1} f(tP_k) \mathbf{1})_i$

Remark: The behaviour of the $\mathbf{x}_k(t)$ is very different from that of $\mathbf{y}_k(t)$: $\mathbf{x}_k(t)$ lacks "memory".

The importance of counting walks
Walk-based centrality

Question 1

Motivation

Problem setting

Four term recurrence

From A to B

Small example

Counting NBT walks

Problem setting

question 2

ABC . . . easy as 123 . . .

Counting

non-k-cycling walks

What else can we do?

- Generalize PageRank to the NBT framework.
- Downweight backtracking rather than completly eliminating it.
- Described the limiting behavior of

$$\mathbf{x}_k(t)_i = \left(\sum_{r=0}^{\infty} c_r t^r p_{r;k}(A)\right)_{ii} \quad \text{and} \quad \mathbf{y}_k(t)_i = \left(\sum_{r=0}^{\infty} c_r t^r p_{r;k}(A)\mathbf{1}\right)_i$$

as $t \to 0$ and $t \to \overline{t}_k$, for $A^T = A$ and for all $k \ge 2$.

Ongoing work: general limiting results, temporal networks and ad hoc numerical techniques.

Setup The importance of counting walks Walk-based centrality Ouestion 1 Motivation Problem setting Four term recurrence From A to B Small example Counting NBT walks Problem setting question 2 ABC . . . easy as 123... Counting non-k-cycling walks

What else can we do?

- F. A., D. J. HIGHAM, V. NOFERINI, "Non-backtracking walk centrality for directed networks", Journal of Complex Networks, 6 (2018), pp. 54–78.
- F. A., D. J. HIGHAM, V. NOFERINI, "Beyond non-backtracking: non-cycling network centrality measures, Proc. R. Soc. A 476: 20190653 (2020).
 - M. Benzi, C. Klymko, "On the limiting behavior of parameter-dependent network centrality measures, SIAM J. Matrix Anal. Appl. 36, pp. 686–706 (2015).
- M. Benzi and C. Klymko, *Total communicability as a centrality measure*, Journal of Complex Networks, 1 (2013), pp. 124–149.
- E. Estrada and D. J. Higham, *Network properties revealed through matrix functions*, SIAM Review, 52 (2010), pp. 696–671.
- P. Grindrod, D. J. Higham, and V. Noferini, *The deformed graph Laplacian and its applications to network centrality analysis*, SIAM Journal on Matrix Analysis and Applications, 39 (2018), pp. 310–341.
- T. Martin, X. Zhang, M. E. J. Newman, "Localization and centrality in networks", Phys. Rev. E90, 052808 (2014).
- L. Torres, T. Eliassi-Rad, "Non-backtracking spectrum: unitary eigenvalues and diagonalizability, Preprint. arXiv:2007.13611 (2020).

LEVERHULME TRUST _____