Combinatorics of nonbacktracking and non-cycling walks and their applications to network science

F. Arrigo, D. J. Higham and V. Noferini

WACA 2021
May 25 - 28, 2021

Glasgow

Setup

The importance of counting walks
Walk-based centrality
Question 1
Motivation
Problem setting
Four term recurrence
From A to B
Small example
Counting NBT walks
Problem setting
question 2
$A B C \ldots$ easy as
123.

Counting
non- k-cycling walks
What else can we do?

■ Graph $G=(V, E)$ with n nodes and m edges, unweighted and w/o loops.
■ Every undirected edge $i-j$ is regarded as: $i \rightarrow j$ and $j \rightarrow i$.

Setup
The importance of counting walks
Walk-based centrality
Question 1
Motivation
Problem setting
Four term recurrence
From A to B
Small example
Counting NBT walks
Problem setting
question 2
$A B C$... easy as
123
Counting
non- k-cycling walks What else can we do?

A walk is any traversal of the network.
Adjacency matrix: $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}, a_{i j}=1$ iff $i \rightarrow j$.

$$
A=\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array}\right]
$$

Easy: $\left(A^{2}\right)_{i j}=\sum_{k=1}^{n} a_{i k} a_{k j}$ counts walks of length two. Generally: entries of A^{r} count walks of length r.

Counting walks is at the heart of several clustering and centrality algorithms!

Walk-based centrality

Setup
The importance of counting walks
Walk-based centrality
Question 1
Motivation
Problem setting
Four term recurrence
From A to B
Small example
Counting NBT walks
Problem setting
question 2
$A B C \ldots$ easy as
123.

Counting
non-k-cycling walks
What else can we do?

Let $f(x)=\sum_{r=0}^{\infty} c_{r} x^{r}$, then, within the radius of convergence:

$$
f(A)=\sum_{r=0}^{\infty} c_{r} A^{r}
$$

Looking closely at $(f(A))_{i j}$:

$$
(f(A))_{i j}=\sum_{r=0}^{\infty} c_{r}\left(A^{r}\right)_{i j}
$$

- it tells us how many walks (up to infinite length) originate at node i and end at node j
- if $c_{r} \geq 0$ and $c_{r} \rightarrow 0$ as $r \rightarrow \infty$, longer walks are given less weight.

Walk-based centrality

Setup

The importance of counting walks
Walk-based centrality
Question 1
Motivation
Problem setting
Four term recurrence
From A to B
Small example
Counting NBT walks
Problem setting
question 2
$A B C \ldots$ easy as
123
Counting
non-k-cycling walks
What else can we do?

Centrality measures assign scores to nodes in graphs to quantify their importance.

Among the most popular centrality measures:

- f-subgraph centrality (SC)

$$
\mathbf{x}(t)_{i}=\mathbf{e}_{i}^{T}\left(\sum_{r=0}^{\infty} c_{r} t^{r} A^{r}\right) \mathbf{e}_{i}=f(A)_{i i}
$$

- f-total (node) communicability (TC):

$$
\mathbf{y}(t)_{i}=\sum_{j=1}^{n} \sum_{r=0}^{\infty} c_{r} t^{r}\left(A^{r}\right)_{i j}=\sum_{j=1}^{n}(f(A))_{i j}=(f(A) \mathbf{1})_{i}
$$

The importance of counting walks

Setup
The importance of counting walks
Walk-based centrality
Question 1
Motivation
Problem setting
Four term recurrence
From A to B
Small example
Counting NBT walks
Problem setting
question 2
$A B C \ldots$ easy as
123.

Counting
non- k-cycling walks
What else can we do?

Katz centrality: row sums of $I+t A+t^{2} A^{2}+t^{3} A^{3}+\cdots$, i.e.:

$$
\mathrm{k}=(I-t A)^{-1} 1, \quad \text { for } 0<t<\rho(A)^{-1} .
$$

\Longrightarrow Solve a sparse linear system!

Same importance to these walks of length four:

$$
\begin{aligned}
& 1 \rightarrow 4 \rightarrow 2 \rightarrow 3 \rightarrow 1 \\
& 1 \rightarrow 4 \rightarrow 1 \rightarrow 4 \rightarrow 1 .
\end{aligned}
$$

... but the first visits the network more thoroughly.

Setup
The importance of counting walks
Walk-based centrality
Question 1
Motivation
Problem setting
Four term recurrence
From A to B
Small example
Counting NBT walks
Problem setting
question 2
$A B C \ldots$ easy as
123.

Counting
non-k-cycling walks
What else can we do?

A walk (of length $r-1$) is any traversal of the network:

$$
\underline{i}=\left(i_{1}, i_{2}, \ldots, i_{r}\right) \quad \text { or } \quad i_{1} \rightarrow i_{2} \rightarrow \cdots \rightarrow i_{r} .
$$

A walk is said to be non-backtracking (NBT) if it does not contain any instance of the form $i \rightarrow j \rightarrow i$.

NBT walks

Setup

The importance of counting walks
Walk-based centrality
Question 1
Motivation
Problem setting
Four term recurrence
From A to B
Small example
Counting NBT walks
Problem setting
question 2
$A B C \ldots$ easy as
123.

Counting
non-k-cycling walks
What else can we do?

A walk (of length $r-1$) is any traversal of the network:

$$
\underline{i}=\left(i_{1}, i_{2}, \ldots, i_{r}\right) \quad \text { or } \quad i_{1} \rightarrow i_{2} \rightarrow \cdots \rightarrow i_{r} .
$$

A walk is said to be non-backtracking (NBT) if it does not contain any instance of the form $i \rightarrow j \rightarrow i$.

$$
\begin{aligned}
& 1 \rightarrow 4 \rightarrow 2 \rightarrow 3 \rightarrow 1 \text { is NBT } \\
& 1 \rightarrow 4 \rightarrow 1 \rightarrow 4 \rightarrow 1 \text { is backtracking. }
\end{aligned}
$$

Setup
The importance of counting walks
Walk-based centrality

Question 1

Motivation
Problem setting
Four term recurrence
From A to B
Small example
Counting NBT walks
Problem setting
question 2
$A B C \ldots$ easy as
123
Counting
non-k-cycling walks
What else can we do?

Question:

- Can we define NBTW-based subgraph centrality and total communicability indices, using entries or sum of entries of

$$
c_{0} p_{0}(A)+c_{1} t p_{1}(A)+c_{2} t^{2} p_{2}(A)+c_{3} t^{3} p_{3}(A)+\cdots
$$

where $p_{r}(A)$ generalizes A^{r} to the NBT setting, i.e., it counts NBTWs of length r, and $t>0$ is selected so that the series converges.

Setup
The importance of counting walks
Walk-based centrality
Question 1

Motivation

Problem setting
Four term recurrence
From A to B
Small example
Counting NBT walks
Problem setting
question 2
$A B C \ldots$ easy as 123.

Counting
non-k-cycling walks
What else can we do?

Non-backtracking walks have been suggested and analyzed in a wide range of fields including (but not limited to!)

- spectral graph theory [Angel, Friedman, Hoory, Horton, Stark, Terras, ...],
- number theory [Terras, ...],
- discrete mathematics [Bowen, Lanford, Stark, Terras, ...],
- stochastic analysis [Alon, Benjamini,Lubetzky, Sodin, ...],
- applied linear algebra [Tarfulea, Perlis, ...],

■ computer science [Zaade, Krzakala, Zdeborová],

Setup
The importance of counting walks
Walk-based centrality Question 1
Motivation
Problem setting
Four term recurrence
From A to B
Small example
Counting NBT walks
Problem setting
question 2
ABC . . . easy as 123

Counting

non-k-cycling walks
What else can we do?

Non-backtracking walks have been suggested and analyzed in a wide range of fields including (but not limited to!)

- spectral graph theory [Angel, Friedman, Hoory, Horton, Stark, Terras, ...],
- number theory [Terras, ...],
- discrete mathematics [Bowen, Lanford, Stark, Terras, ...],
- stochastic analysis [Alon, Benjamini,Lubetzky, Sodin, ...],
- applied linear algebra [Tarfulea, Perlis, ...],

■ computer science [Zaade, Krzakala, Zdeborová],

In Network Science:

- finding communities [Kawamoto, Krzakala, Moore, Mossel, Zhang,...);
- assigning centrality values to nodes [Martin, Zhang, Newman, Pastor-Satorras, Castellano, Flores, Criado, and many others..

Setup
The importance of counting walks
Walk-based centrality
Question 1

Motivation

Problem setting
Four term recurrence
From A to B
Small example
Counting NBT walks
Problem setting
question 2
$A B C \ldots$ easy as
123.

Counting
non-k-cycling walks
What else can we do?

■ NBTWs visit the network more thoroughly;
■ NBTW-based measures avoid localization;

- They can be computed at the same (or lower) computational costs;
- Larger radius of convergence;

■ High versatility from the viewpoint of Linear Algebra

Problem setting

Setup

The importance of counting walks
Walk-based centrality
Question 1
Motivation

Problem setting

Four term recurrence
From A to B
Small example
Counting NBT walks
Problem setting
question 2
$A B C \ldots$ easy as
123.

Counting
non-k-cycling walks
What else can we do?

Let $p_{r}(A) \in \mathbb{R}^{n \times n}$ be such that
$\left(P_{r}(A)\right)_{i j}=\mid\{$ NBTW s of length r from node i to node $j\} \mid$.

Setup
The importance of counting walks
Walk-based centrality
Question 1
Motivation

Problem setting

Four term recurrence
From A to B
Small example
Counting NBT walks
Problem setting
question 2
$A B C \ldots$ easy as
123.

Counting
non-k-cycling walks
What else can we do?

Let $p_{r}(A) \in \mathbb{R}^{n \times n}$ be such that $\left(p_{r}(A)\right)_{i j}=\mid\{$ NBTW s of length r from node i to node $j\} \mid$.

Given $f(A)=\sum_{r=0}^{\infty} c_{r} t^{r} A^{r}$, let the non-backtracking counterpart of the matrix function $f(A)$ be:

$$
F(A):=\sum_{r=0}^{\infty} c_{r} t^{r} p_{r}(A) .
$$

Setup
The importance of counting walks
Walk-based centrality
Question 1
Motivation

Problem setting

Four term recurrence
From A to B
Small example
Counting NBT walks
Problem setting
question 2
$A B C \ldots$ easy as
123.

Counting
non-k-cycling walks
What else can we do?

Let $p_{r}(A) \in \mathbb{R}^{n \times n}$ be such that
$\left(p_{r}(A)\right)_{i j}=\mid\{$ NBTW s of length r from node i to node $j\} \mid$.
Given $f(A)=\sum_{r=0}^{\infty} c_{r} t^{r} A^{r}$, let the non-backtracking counterpart of the matrix function $f(A)$ be:

$$
F(A):=\sum_{r=0}^{\infty} c_{r} t^{r} p_{r}(A) .
$$

Define the NBTW-based SC of node i as:

$$
x_{2}(i)=(F(A))_{i i}
$$

and the NBTW-based TC of node i as:

$$
\mathrm{y}_{2}(i)=(F(A) 1)_{i} .
$$

Setup

The importance of counting walks
Walk-based centrality
Question 1
Motivation
Problem setting
Four term recurrence
From A to B
Small example
Counting NBT walks
Problem setting
question 2
$A B C \ldots$ easy as
123.

Counting
non-k-cycling walks
What else can we do?

Theorem: Let A be the adj. matrix of an unweighted digraph, $D=\operatorname{diag}\left(\operatorname{diag}\left(A^{2}\right)\right)$, and $N=A-A \circ A^{T}$. Then,

$$
\begin{aligned}
& p_{0}(A)=1, \\
& p_{1}(A)=A_{1} \\
& p_{2}(A)=A^{2}-D
\end{aligned}
$$

and

$$
p_{r}(A)=p_{r-1}(A) A+p_{r-2}(A)(I-D)-p_{r-3}(A) N, \quad \forall r \geq 3 .
$$

[^0]
Four term recurrence

Setup

The importance of counting walks
Walk-based centrality
Question 1
Motivation
Problem setting
Four term recurrence
From A to B
Small example
Counting NBT walks
Problem setting
question 2
$A B C \ldots$ easy as
123.

Counting
non- k-cycling walks
What else can we do?

$$
p_{r+3}(A)=p_{r+2}(A) A+p_{r+1}(A)(I-D)-p_{r}(A) N .
$$

Entrywise:

$$
\begin{array}{l|l}
\left(p_{r+3}(A)\right)_{i j}= & \overbrace{i \rightarrow \cdots \rightarrow \star \rightarrow \star \rightarrow \star \rightarrow j}^{\text {NBTW of length } r+3} \\
\hline+\left(p_{r+2}(A) A\right)_{i j} & i \rightarrow \cdots \rightarrow \star \rightarrow \star \rightarrow \ell \rightarrow j
\end{array}
$$

Four term recurrence

Setup

The importance of counting walks
Walk-based centrality
Question 1
Motivation
Problem setting

Four term recurrence

From A to B
Small example
Counting NBT walks
Problem setting
question 2
$A B C \ldots$ easy as
123.

Counting
non- k-cycling walks What else can we do?

$$
p_{r+3}(A)=p_{r+2}(A) A+p_{r+1}(A)(I-D)-p_{r}(A) N .
$$

Entrywise:

$\left(p_{r+3}(A)\right)_{i j}=$	$\overbrace{i \rightarrow \cdots \rightarrow \star \rightarrow \star \rightarrow \star \rightarrow j}^{\text {NBTW of length } r+3}$
$+\left(p_{r+2}(A) A\right)_{i j}$	$i \rightarrow \cdots \rightarrow \star \rightarrow \star \rightarrow \ell \rightarrow j$
$-\left(p_{r+1}(A) D\right)_{i j}$	$i \rightarrow \cdots \rightarrow \star \rightarrow j \rightarrow \ell \rightarrow j$

Four term recurrence

Setup

The importance of counting walks
Walk-based centrality
Question 1
Motivation
Problem setting

Four term recurrence

From A to B
Small example
Counting NBT walks
Problem setting
question 2
$A B C \ldots$ easy as
123.

Counting

non- k-cycling walks What else can we do?

$$
p_{r+3}(A)=p_{r+2}(A) A+p_{r+1}(A)(I-D)-p_{r}(A) N .
$$

Entrywise:

$\left(p_{r+3}(A)\right)_{i j}=$	$\overbrace{i \rightarrow \cdots \rightarrow \star \rightarrow \star \rightarrow \star \rightarrow j}^{\text {NBTW of length r + 3 }}$
$+\left(p_{r+2}(A) A\right)_{i j}$	$i \rightarrow \cdots \rightarrow \star \rightarrow \star \rightarrow \ell \rightarrow j$
$-\left(p_{r+1}(A) D\right)_{i j}$	$i \rightarrow \cdots \rightarrow \star \rightarrow j \rightarrow \ell \rightarrow j$
$+\left(p_{r+1}(A)\right)_{i j}$	$i \rightarrow \cdots \rightarrow \ell \rightarrow j \rightarrow \ell \rightarrow j$

Four term recurrence

Setup

The importance of counting walks
Walk-based centrality
Question 1
Motivation
Problem setting

Four term recurrence

From A to B
Small example
Counting NBT walks
Problem setting
question 2
$A B C \ldots$ easy as
123.

Counting

non- k-cycling walks
What else can we do?

$$
p_{r+3}(A)=p_{r+2}(A) A+p_{r+1}(A)(I-D)-p_{r}(A) N .
$$

Entrywise:

$\left(p_{r+3}(A)\right)_{i j}=$	$\overbrace{i \rightarrow \cdots \rightarrow \star \rightarrow \star \rightarrow \star \rightarrow j}^{\text {NBTW of length } r+3}$
$+\left(p_{r+2}(A) A\right)_{i j}$	$i \rightarrow \cdots \rightarrow \star \rightarrow \star \rightarrow \ell \rightarrow j$
$-\left(p_{r+1}(A) D\right)_{i j}$	$i \rightarrow \cdots \rightarrow \star \rightarrow j \rightarrow \ell \rightarrow j$
$+\left(p_{r+1}(A)\right)_{i j}$	$i \rightarrow \cdots \rightarrow \ell \rightarrow j \rightarrow \ell \rightarrow j$
$-\left(p_{r}(A) N\right)_{i j}$	it must hold $j \leftrightarrow \ell$

Setup
The importance of counting walks
Walk-based centrality
Question 1
Motivation
Problem setting
Four term recurrence
From A to B
Small example
Counting NBT walks
Problem setting
question 2
$A B C \ldots$ easy as
123.

Counting
non-k-cycling walks
What else can we do?

The non-backtracking analogue of Katz centrality is:

$$
\mathrm{k}_{N B T}:=F(A) 1=\sum_{r=0}^{\infty} t^{r} p_{r}(A) 1 .
$$

Theorem: Let A, N, and D be defined as before. Moreover, if we use $c_{r}=1$ and $t>0$ is such that $F(A)=\sum_{r=0}^{\infty} t^{r} p_{r}(A)$ converges, then

$$
\left[I-A t+(D-I) t^{2}+N t^{3}\right] F(A)=\left(1-t^{2}\right) I
$$

Setup
The importance of counting walks
Walk-based centrality
Question 1
Motivation
Problem setting

Four term recurrence

From A to B
Small example
Counting NBT walks
Problem setting
question 2
$A B C \ldots$ easy as
123.

Counting
non-k-cycling walks
What else can we do?

The non-backtracking analogue of Katz centrality is:

$$
\mathrm{k}_{N B T}:=F(A) 1=\sum_{r=0}^{\infty} t^{r} p_{r}(A) 1 .
$$

Theorem: Let A, N, and D be defined as before. Moreover, if we use $c_{r}=1$ and $t>0$ is such that $F(A)=\sum_{r=0}^{\infty} t^{r} p_{r}(A)$ converges, then

$$
\left[I-A t+(D-I) t^{2}+N t^{3}\right] F(A)=\left(1-t^{2}\right) I
$$

$$
\mathbf{k}_{N B T}=\left(1-t^{2}\right)\left[I-A t+(D-I) t^{2}+N t^{3}\right]^{-1} 1
$$

Setup
The importance of counting walks
Walk-based centrality
Question 1
Motivation
Problem setting
Four term recurrence

From A to B

Small example
Counting NBT walks
Problem setting
question 2
$A B C \ldots$ easy as
123.

Counting
non-k-cycling walks What else can we do?

■ $i-j \Leftrightarrow i \rightarrow j$ and $j \rightarrow i$
■ $G=(V, E)$ with $n=m_{1}$ nodes and m_{2} edges;

- Adjacency matrix: $A=W_{1}=P_{1}$;
- Source and target matrices: $L_{1}, R_{1} \in \mathbb{R}^{m_{2} \times m_{1}}$ of P_{1} :
$\left(L_{1}\right)_{\underline{i} \ell}=\left\{\begin{array}{lc}1 & \text { if } i_{1}=\ell \\ 0 & \text { otherwise }\end{array}\right.$ and $\left(R_{1}\right)_{\underline{i} \ell}=\left\{\begin{array}{lc}1 & \text { if } i_{2}=\ell \\ 0 & \text { otherwise }\end{array}\right.$
- $\quad W_{2}=R_{1} L_{1}^{T}$;

Hashimoto matrix:

$$
B=P_{2}=W_{2}-\Delta_{2},
$$

where $\Delta_{2}=W_{2} \circ W_{2}^{\top}$ and \circ entry-wise product.

Setup
The importance of counting walks
Walk-based centrality
Question 1
Motivation
Problem setting
Four term recurrence

From A to B

Small example
Counting NBT walks
Problem setting
question 2
$A B C \ldots$ easy as
123.

Counting
non- k-cycling walks
What else can we do?

■ $i-j \Leftrightarrow i \rightarrow j$ and $j \rightarrow i$
■ $G=(V, E)$ with $n=m_{1}$ nodes and m_{2} edges;

- Adjacency matrix: $A=W_{1}=P_{1}$;

■ Source and target matrices: $L_{1}, R_{1} \in \mathbb{R}^{m_{2} \times m_{1}}$ of P_{1} :
$\left(L_{1}\right)_{\underline{i} \ell}=\left\{\begin{array}{ll}1 & \text { if } i_{1}=\ell \\ 0 & \text { otherwise }\end{array} \quad\right.$ and $\left(R_{1}\right)_{\underline{i} \ell}=\left\{\begin{array}{lc}1 & \text { if } i_{2}=\ell \\ 0 & \text { otherwise }\end{array}\right.$

- $\quad W_{2}=R_{1} L_{1}^{T}$;

Hashimoto matrix:

$$
B=P_{2}=W_{2}-\Delta_{2},
$$

where $\Delta_{2}=W_{2} \circ W_{2}^{\top}$ and \circ entry-wise product.

Setup
The importance of counting walks
Walk-based centrality
Question 1
Motivation
Problem setting
Four term recurrence

From A to B

Small example
Counting NBT walks
Problem setting
question 2
$A B C \ldots$ easy as
123.

Counting
non-k-cycling walks
What else can we do?

■ $i-j \Leftrightarrow i \rightarrow j$ and $j \rightarrow i$
■ $G=(V, E)$ with $n=m_{1}$ nodes and m_{2} edges;

- Adjacency matrix: $A=W_{1}=P_{1}$;

■ Source and target matrices: $L_{1}, R_{1} \in \mathbb{R}^{m_{2} \times m_{1}}$ of P_{1} :
$\left(L_{1}\right)_{\underline{i} \ell}=\left\{\begin{array}{ll}1 & \text { if } i_{1}=\ell \\ 0 & \text { otherwise }\end{array} \quad\right.$ and $\left(R_{1}\right)_{\underline{i} \ell}=\left\{\begin{array}{lc}1 & \text { if } i_{2}=\ell \\ 0 & \text { otherwise }\end{array}\right.$

- $\quad W_{2}=R_{1} L_{1}^{T}$;
- Hashimoto matrix:

$$
B=P_{2}=W_{2}-\Delta_{2},
$$

where $\Delta_{2}=W_{2} \circ W_{2}^{\top}$ and \circ entry-wise product.

Setup
The importance of counting walks
Walk-based centrality
Question 1
Motivation
Problem setting
Four term recurrence

From A to B

Small example
Counting NBT walks
Problem setting
question 2
$A B C \ldots$ easy as
123.

Counting
non-k-cycling walks
What else can we do?

■ $i-j \Leftrightarrow i \rightarrow j$ and $j \rightarrow i$
■ $G=(V, E)$ with $n=m_{1}$ nodes and m_{2} edges;

- Adjacency matrix: $A=W_{1}=P_{1}$;

■ Source and target matrices: $L_{1}, R_{1} \in \mathbb{R}^{m_{2} \times m_{1}}$ of P_{1} :
$\left(L_{1}\right)_{\underline{i} \ell}=\left\{\begin{array}{ll}1 & \text { if } i_{1}=\ell \\ 0 & \text { otherwise }\end{array} \quad\right.$ and $\left(R_{1}\right)_{\underline{i} \ell}=\left\{\begin{array}{lc}1 & \text { if } i_{2}=\ell \\ 0 & \text { otherwise }\end{array}\right.$

- $\quad W_{2}=R_{1} L_{1}$;

■ Hashimoto matrix:

$$
B=P_{2}=W_{2}-\Delta_{2},
$$

where $\Delta_{2}=W_{2} \circ W_{2}^{\top}$ and \circ entry-wise product.

From A to B (cont.)

Setup

The importance of counting walks
Walk-based centrality
Question 1
Motivation
Problem setting
Four term recurrence
From A to B
Small example
Counting NBT walks
Problem setting
question 2
$A B C \ldots$ easy as
123.

Counting
non-k-cycling walks
What else can we do?

We want to concatenate $\underline{i}=\left(i_{1}, i_{2}\right)$ and $\underline{j}=\left(j_{1}, j_{2}\right)$ without
them backtracking:
$\qquad i_{1} \rightarrow i_{2}=j_{1} \rightarrow j_{2}$ and $i_{1} \neq j_{2}$

$$
i_{1} \rightarrow i_{2}=j_{1} \rightarrow j_{2} \quad \text { and } \quad i_{1} \neq j_{2}
$$

Setup

The importance of counting walks
Walk-based centrality
Question 1
Motivation
Problem setting
Four term recurrence

From A to B

Small example
Counting NBT walks
Problem setting
question 2
$A B C \ldots$ easy as
123.

Counting

non-k-cycling walks
What else can we do?

We want to concatenate $\underline{i}=\left(i_{1}, i_{2}\right)$ and $\underline{j}=\left(j_{1}, j_{2}\right)$ without them backtracking:

$$
i_{1} \rightarrow i_{2}=j_{1} \rightarrow j_{2} \quad \text { and } \quad i_{1} \neq j_{2}
$$

Entrywise it holds:

$$
\begin{gathered}
\left(W_{2}\right)_{\underline{i} \underline{j}}=\left(R_{1} L_{1}^{T}\right)_{\underline{i} \underline{j}}=\delta_{i 2 j_{1}} \\
\left(P_{2}\right)_{\underline{i} \underline{j}}=\left(W_{2}-W_{2} \circ W_{2}^{T}\right)_{\underline{i j}}=\delta_{i 2 j 1}\left(1-\delta_{i 1, j 2}\right)
\end{gathered}
$$

since

$$
\left(W_{2} \circ W_{2}^{T}\right)_{\underline{i} \underline{j}}=\left(W_{2}\right)_{\underline{i j}-}\left(W_{2}\right)_{\underline{j} \underline{i}}=\delta_{i_{2} 1} \delta_{j 2 i_{1}}
$$

where δ is the Kronecker delta. Glasgow

Small example

Setup

The importance of counting walks
Walk-based centrality
Question 1
Motivation
Problem setting
Four term recurrence
From A to B
Small example
Counting NBT walks
Problem setting
question 2
$A B C \ldots$ easy as
123.

Counting
non-k-cycling walks
What else can we do?

Glasgow

Small example

Setup

The importance of counting walks
Walk-based centrality
Question 1
Motivation
Problem setting
Four term recurrence
From A to B

Glasgow

Small example

Setup

The importance of counting walks
Walk-based centrality
Question 1
Motivation
Problem setting
Four term recurrence
From A to B
Small example
Counting NBT walks
Problem setting question 2
$A B C \ldots$ easy as 123.

Counting
non-k-cycling walks What else can we do?

Glasgow

Small example

Setup

The importance of counting walks
Walk-based centrality
Question 1
Motivation
Problem setting
Four term recurrence
From A to B
Small example
Counting NBT walks
Problem setting question 2
$A B C \ldots$ easy as 123.

Counting

non- k-cycling walks
What else can we do?

Strathclyde

 Glasgow
Counting NBT walks

It can be shown that

$$
L_{1}^{\top}\left(B^{r}\right) R_{1}=L_{1}^{\top}\left(P_{2}^{r}\right) R_{1}=p_{r+1 ; 2}(A)
$$

Setup

The importance of counting walks
Walk-based centrality
Question 1
Motivation
Problem setting
Four term recurrence
From A to B
Small example
Counting NBT walks
Problem setting
question 2
$A B C$... easy as
123.

Counting
non-k-cycling walks
What else can we do?

Setup
The importance of counting walks
Walk-based centrality
Question 1
Motivation
Problem setting
Four term recurrence
From A to B
Small example
Counting NBT walks
Problem setting
question 2
$A B C \ldots$ easy as
123.

Counting
non-k-cycling walks
What else can we do?

It can be shown that

$$
L_{1}^{T}\left(B^{r}\right) R_{1}=L_{1}^{T}\left(P_{2}^{r}\right) R_{1}=p_{r+1 ; 2}(A)
$$

and moreover, within the radius of convergence,

$$
\mathrm{x}_{2}(t)_{i}=\left(L_{1}^{\top} \partial f\left(t P_{2}\right) R_{1}\right)_{i i} \quad \text { and } \quad \mathrm{y}_{2}(t)_{i}=\left(L_{1}^{\top} \partial f\left(t P_{2}\right) 1\right)_{i}
$$

where

$$
f(z)=\sum_{r=0}^{\infty} c_{r} z^{r} \quad \text { and } \quad \partial f(z):=\sum_{r=0}^{\infty} c_{r+1} z^{r}
$$

Problem setting

Setup

The importance of counting walks
Walk-based centrality
Question 1
Motivation
Problem setting
Four term recurrence
From A to B
Small example
Counting NBT walks

Problem setting

question 2
$A B C \ldots$ easy as
123.

Counting
non-k-cycling walks
What else can we do?

Let $p_{r ; k}(A)$ entrywise defined as

$$
\left(p_{r ; k}(A)\right)_{i j}=\#\left\{\left(i_{1}=i_{1} \ldots, i_{r+1}=j\right) \mid w / \mathrm{o} \text { cycles of length } \leq k\right\}
$$

Setup
The importance of counting walks
Walk-based centrality
Question 1
Motivation
Problem setting
Four term recurrence
From A to B
Small example
Counting NBT walks

Problem setting

question 2
$A B C \ldots$ easy as
123.

Counting
non-k-cycling walks
What else can we do?

Let $p_{r ; k}(A)$ entrywise defined as
$\left(p_{r ; k}(A)\right)_{i j}=\#\left\{\left(i_{1}=i_{1} \ldots, i_{r+1}=j\right) \mid w / o\right.$ cycles of length $\left.\leq k\right\}$
Given $f(A)=\sum_{r=0}^{\infty} c_{r} t^{r} A^{r}$, let the non- k-cylcing counterpart of the matrix function $f(A)$ be:

$$
F_{k}(A):=\sum_{r=0}^{\infty} c_{r} t^{r} p_{r ; k}(A) .
$$

Setup
The importance of counting walks
Walk-based centrality
Question 1
Motivation
Problem setting
Four term recurrence
From A to B
Small example
Counting NBT walks

Problem setting

question 2
$A B C \ldots$ easy as
123.

Counting

non-k-cycling walks
What else can we do?

Let $p_{r ; k}(A)$ entrywise defined as
$\left(p_{r ; k}(A)\right)_{i j}=\#\left\{\left(i_{1}=i_{1} \ldots, i_{r+1}=j\right) \mid\right.$ w/o cycles of length $\left.\leq k\right\}$
Given $f(A)=\sum_{r=0}^{\infty} c_{r} t^{r} A^{r}$, let the non- k-cylcing counterpart of the matrix function $f(A)$ be:

$$
F_{k}(A):=\sum_{r=0}^{\infty} c_{r} t^{r} p_{r ; k}(A) .
$$

Define the non- k-cycling SC of node i as:

$$
x_{k}(i)=\left(F_{k}(A)\right)_{i i}
$$

and the non- k-cycling TC of node i as:

$$
y_{k}(i)=\left(F_{k}(A) 1\right)_{i} .
$$

Setup
The importance of counting walks
Walk-based centrality
Question 1
Motivation
Problem setting
Four term recurrence
From A to B
Small example
Counting NBT walks
Problem setting

question 2

$A B C$... easy as
123
Counting
non-k-cycling walks
What else can we do?

Question: Can we define define non-k-cycling subgraph centrality and total communicability indices, using entries or sum of entries of

$$
c_{0} p_{0 ; k}(A)+c_{1} t p_{1 ; k}(A)+c_{2} t^{2} p_{2 ; k}(A)+c_{3} t^{3} p_{3 ; k}(A)+\cdots
$$

where $p_{r ; k}(A)$ generalizes A^{r} to the non- k-cycling setting and $t>0$ is selected so that the series converges.

$$
\mathbf{x}_{k}(t)_{i}=\left(\sum_{r=0}^{\infty} c_{r} t^{r} p_{r ; k}(A)\right)_{i i}
$$

and

$$
\mathbf{y}_{k}(t)_{i}=\left(\sum_{r=0}^{\infty} c_{r} t^{r} p_{r ; k}(A) 1\right)_{i}
$$

Setup
The importance of counting walks
Walk-based centrality
Question 1
Motivation
Problem setting
Four term recurrence
From A to B
Small example
Counting NBT walks
Problem setting
question 2

$A B C \ldots$ easy as

123
Counting
non- k-cycling walks
What else can we do?

■ For $k=2,3, \ldots$, given $P_{k-1} \in \mathbb{R}^{m_{k-1} \times m_{k-1}}$

- Source and target matrices $L_{k-1}, R_{k-1} \in \mathbb{R}^{m_{k} \times m_{k-1}}$ of P_{k-1} :

$$
\left(L_{k-1}\right)_{\underline{\ell}}=\left\{\begin{array}{lc}
1 & \text { if } i_{j}=\ell_{j} \text { for } j=1, \ldots, k-1 \\
0 & \text { otherwise }
\end{array}\right.
$$

$$
\left(R_{k-1}\right)_{\underline{i \ell}}= \begin{cases}1 & \text { if } i_{j+1}=\ell_{j} \text { for } j=1, \ldots, k-1 \\ 0 & \text { otherwise }\end{cases}
$$

- $\quad W_{k}=R_{k-1} L_{k-1}^{\top}$ (kth order De Bruifin graphs of paths in the network)
- Non- k-cycling matrix

$$
P_{k}=W_{k}-\Delta_{k},
$$

where $\Delta_{k}=W_{k} \circ\left(W_{k}^{T}\right)^{k-1}$

Setup
The importance of counting walks
Walk-based centrality
Question 1
Motivation
Problem setting
Four term recurrence
From A to B
Small example
Counting NBT walks
Problem setting
question 2

$A B C$... easy as

 123Counting
non-k-cycling walks
What else can we do?

■ For $k=2,3, \ldots$, given $P_{k-1} \in \mathbb{R}^{m_{k-1} \times m_{k-1}}$
■ Source and target matrices $L_{k-1}, R_{k-1} \in \mathbb{R}^{m_{k} \times m_{k-1}}$ of P_{k-1} :

$$
\begin{aligned}
& \left(L_{k-1}\right)_{\underline{i \ell}}= \begin{cases}1 & \text { if } i_{j}=\ell_{j} \text { for } j=1, \ldots, k-1 \\
0 & \text { otherwise }\end{cases} \\
& \left(R_{k-1}\right)_{\underline{i} \ell}= \begin{cases}1 & \text { if } i_{j+1}=\ell_{j} \text { for } j=1, \ldots, k-1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

- $\quad W_{k}=R_{k-1} L_{k-1}^{\top}$ (kth order De Bruifin fraphs of paths in the network)

■ Non- k-cycling matrix

$$
P_{k}=W_{k}-\Delta_{k},
$$

where $\Delta_{k}=W_{k} \circ\left(W_{k}^{T}\right)^{k-1}$

Setup
The importance of counting walks
Walk-based centrality
Question 1
Motivation
Problem setting
Four term recurrence
From A to B
Small example
Counting NBT walks
Problem setting
question 2

ABC ... easy as

123
Counting
non-k-cycling walks
What else can we do?

■ For $k=2,3, \ldots$, given $P_{k-1} \in \mathbb{R}^{m_{k-1} \times m_{k-1}}$
■ Source and target matrices $L_{k-1}, R_{k-1} \in \mathbb{R}^{m_{k} \times m_{k-1}}$ of P_{k-1} :

$$
\begin{aligned}
& \left(L_{k-1}\right)_{\underline{i \ell}}= \begin{cases}1 & \text { if } i_{j}=\ell_{j} \text { for } j=1, \ldots, k-1 \\
0 & \text { otherwise }\end{cases} \\
& \left(R_{k-1}\right)_{\underline{i} \ell}= \begin{cases}1 & \text { if } i_{j+1}=\ell_{j} \text { for } j=1, \ldots, k-1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

■ $\quad W_{k}=R_{k-1} L_{k-1}^{T}$ (kth order De Bruif graphs of paths in the network)

- Non- k-cycling matrix

$$
P_{k}=W_{k}-\Delta_{k},
$$

where $\Delta_{k}=W_{k} \circ\left(W_{k}^{T}\right)^{k-1}$

Setup
The importance of counting walks
Walk-based centrality
Question 1
Motivation
Problem setting
Four term recurrence
From A to B
Small example
Counting NBT walks
Problem setting
question 2

$A B C$... easy as

123
Counting
non- k-cycling walks
What else can we do?

■ For $k=2,3, \ldots$, given $P_{k-1} \in \mathbb{R}^{m_{k-1} \times m_{k-1}}$
■ Source and target matrices $L_{k-1}, R_{k-1} \in \mathbb{R}^{m_{k} \times m_{k-1}}$ of P_{k-1} :

$$
\begin{aligned}
& \left(L_{k-1}\right)_{\underline{i \ell}}= \begin{cases}1 & \text { if } i_{j}=\ell_{j} \text { for } j=1, \ldots, k-1 \\
0 & \text { otherwise }\end{cases} \\
& \left(R_{k-1}\right)_{\underline{i} \ell}= \begin{cases}1 & \text { if } i_{j+1}=\ell_{j} \text { for } j=1, \ldots, k-1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

- $\quad W_{k}=R_{k-1} L_{k-1}^{T}$ (kth order De Bruiup graphs of paths in the network)

■ Non- k-cycling matrix

$$
P_{k}=W_{k}-\Delta_{k},
$$

where $\Delta_{k}=W_{k} \circ\left(W_{k}^{T}\right)^{k-1}$

Setup

The importance of counting walks
Walk-based centrality
Question 1
Motivation
Problem setting
Four term recurrence
From A to B
Small example
Counting NBT walks
Problem setting
question 2

ABC
 easy as

Counting
non- k-cycling walks
What else can we do?

> We want to concatenate $\underline{i}=\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ and $\underline{j}=$ $\left(j_{1}, j_{2}, \ldots, j_{k}\right)$ without them closing a k-cycle:

$$
i_{1} \rightarrow i_{2}=j_{1} \rightarrow i_{3}=j_{2} \rightarrow \cdots \rightarrow i_{k}=j_{k-1} \rightarrow j_{k}
$$

and

$$
i_{1} \neq j_{k}
$$

Setup

The importance of counting walks
Walk-based centrality
Question 1
Motivation
Problem setting
Four term recurrence
From A to B
Small example
Counting NBT walks
Problem setting
question 2

ABC... easy as

Counting
non- k-cycling walks
What else can we do?

We want to concatenate $\underline{i}=\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ and $\underline{j}=$ $\left(j_{1}, j_{2}, \ldots, j_{k}\right)$ without them closing a k-cycle:

$$
i_{1} \rightarrow i_{2}=j_{1} \rightarrow i_{3}=j_{2} \rightarrow \cdots \rightarrow i_{k}=j_{k-1} \rightarrow j_{k}
$$

and

$$
i_{1} \neq j_{k}
$$

$$
\left(W_{k}\right)_{\underline{i} \underline{-}}=\left(R_{k-1} L_{k-1}^{T}\right)_{\underline{i} \underline{j}}= \begin{cases}1 & \text { if } i_{\ell+1}=j \ell \text { for } \ell=1, \ldots, k-1 \\ 0 & \text { otherwise }\end{cases}
$$

$$
\left(P_{k}\right)_{\underline{i} \underline{j}}=\left(W_{k}-W_{k} \circ\left(W_{k}^{T}\right)^{k-1}\right)_{\underline{i} \underline{j}}=\prod_{\ell=1}^{k-1} \delta_{i \ell+1, j \ell}\left(1-\delta_{i, j_{k}}\right)
$$

since

$$
\left(W_{k}^{T}\right)_{\underline{i j}}^{k-1}=\delta_{i j j_{k}}
$$

where δ is the Kronecker delta.

Glasgow

Small example

Setup

The importance of counting walks
Walk-based centrality
Question 1
Motivation
Problem setting
Four term recurrence
From A to B
Small example
Counting NBT walks
Problem setting
question 2

Counting
non-k-cycling walks
What else can we do?

Glasgow

Small example

Setup

The importance of counting walks
Walk-based centrality
Question 1
Motivation
Problem setting
Four term recurrence
From A to B
Small example
Counting NBT walks
Problem setting

question 2

Counting

non- k-cycling walks
What else can we do?

Counting non- k-cycling walks

Setup

The importance of counting walks
Walk-based centrality
Question 1
Motivation
Problem setting
Four term recurrence
From A to B
Small example
Counting NBT walks
Problem setting question 2
$A B C$. . easy as
123.

Counting
non-k-cycling walks
What else can we do?

It can be shown that

$$
\mathcal{L}_{k-1}^{T}\left(P_{k}^{r}\right) \mathcal{R}_{k-1}=p_{r+k-1 ; k}(A)
$$

where

$$
\mathcal{L}_{k-1}=L_{1} L_{2} \cdots L_{k-1} \quad \text { and } \quad \mathcal{R}_{k-1}=R_{1} R_{2} \cdots R_{k-1}
$$

and moreover, within the radius of convergence,
$\mathbf{x}_{k}(t)_{i}=\left(\mathcal{L}_{k-1}^{T} \partial^{k-1} f\left(t P_{k}\right) \mathcal{R}_{k-1}\right)_{i i} \quad$ and $\quad \mathbf{y}_{k}(t)_{i}=\left(\mathcal{L}_{k-1}^{T} \partial^{k-1} f\left(t P_{k}\right) 1\right)_{i}$

Remark: The behaviour of the $x_{k}(t)$ is very different from that of $y_{k}(t): x_{k}(t)$ lacks "memory".

Setup
The importance of counting walks
Walk-based centrality
Question 1
Motivation
Problem setting
Four term recurrence
From A to B
Small example
Counting NBT walks
Problem setting
question 2
$A B C \ldots$ easy as
123.

Counting
non- k-cycling walks
What else can we do?

- Generalize PageRank to the NBT framework.
- Downweight backtracking rather than completly eliminating it.
- Described the limiting behavior of
$\mathbf{x}_{k}(t)_{i}=\left(\sum_{r=0}^{\infty} c_{r} t^{r} p_{r ; k}(A)\right)_{i i} \quad$ and $\quad \mathbf{y}_{k}(t)_{i}=\left(\sum_{r=0}^{\infty} c_{r} t^{r} p_{r ; k}(A) 1\right)_{i}$
as $t \rightarrow 0$ and $t \rightarrow \bar{t}_{k}$, for $A^{T}=A$ and for all $k \geq 2$.
- Ongoing work: general limiting results, temporal networks and ad hoc numerical techniques.

Thank you

Setup

The importance of counting walks
Walk-based centrality
Question 1
Motivation
Problem setting
Four term recurrence
From A to B
Small example
Counting NBT walks
Problem setting
question 2
$A B C$. . easy as
123
Counting
non-k-cycling walks
What else can we do?

- F. A., D. J. Higham, V. Noferini, "Non-backtracking walk centrality for directed networks", Journal of Complex Networks, 6 (2018), pp. 54-78
- F. A., D. J. Higham, V. Noferinı, "Beyond non-backtracking: non-cycling network centrality measures, Proc. R. Soc. A 476: 20190653 (2020).
- M. Benzi, C. Klymko, "On the limiting behavior of parameter-dependent network centrality measures, SIAM J. Matrix Anal. Appl. 36, pp. 686-706 (2015).
- M. Benzi and C. Klymko, Total communicability as a centrality measure, Journal of Complex Networks, 1 (2013), pp. 124-149.
- E. Estrada and D. J. Higham, Network properties revealed through matrix functions, SIAM Review, 52 (2010), pp. 696-671.
- P. Grindrod, D. J. Higham, and V. Noferini, The deformed graph Laplacian and its applications to network centrality analysis, SIAM Journal on Matrix Analysis and Applications, 39 (2018), pp. 310-341.
- T. Martin, X. Zhang, M. E. J. Newman, "Localization and centrality in networks", Phys. Rev. E90, 052808 (2014).
- L. Torres, T. Eliassi-Rad, "Non-backtracking spectrum: unitary eigenvalues and diagonalizability, Preprint. arXiv:2007.13611 (2020).

L E V ER H U L M E TRUST

[^0]: Tarfulea \& Perris, "An Ihara formula for partially directed graphs", LAA (2009).

