A coupling of rooted spectral measures

T. Espinasse and P. Rochet

1 Spectral measure

2 Coupling of the rooted spectral measures

3 Théorème limite

4 Combinatorics interpretation

Spectral measure

$A=\left(a_{i j}\right)_{i, j=1, \ldots, N}$ real symmetric matrix.

Definition

The local spectral measure at i is the unique measure μ_{i} on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ with moments:

$$
\int_{\mathbb{R}} x^{k} d \mu_{i}(x)=\left(A^{k}\right)_{i i}, k=0,1,2, \ldots
$$

Spectral measure

$$
A=\left(a_{i j}\right)_{i, j=1, \ldots, N} \text { real symmetric matrix. }
$$

Definition

The local spectral measure at i is the unique measure μ_{i} on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ with moments:

$$
\int_{\mathbb{R}} x^{k} d \mu_{i}(x)=\left(A^{k}\right)_{i i}, k=0,1,2, \ldots
$$

For A the adjacency matrix of a graph G, μ_{i} 's k-th moment counts the length k closed walks from i to i in G.

In this wase, we call μ_{i} the rooted spectral measure at i.

Spectral measure

Proposition

Let $A=P \Lambda P^{\top}$ be a spectral decomposition of A with $P=\left(p_{i j}\right)_{i, j=1, \ldots, N}$ orthogonal and $\Lambda=\operatorname{Diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right)$, alors

$$
\mu_{i}=\sum_{j=1}^{N} p_{i j}^{2} \delta_{\lambda_{j}} .
$$

Spectral measure

Proposition

Let $A=P \Lambda P^{\top}$ be a spectral decomposition of A with $P=\left(p_{i j}\right)_{i, j=1, \ldots, N}$ orthogonal and $\Lambda=\operatorname{Diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right)$, alors

$$
\mu_{i}=\sum_{j=1}^{N} p_{i j}^{2} \delta_{\lambda_{j}}
$$

- $\left(A^{k}\right)_{i i}=\left(P \Lambda^{k} P^{\top}\right)_{i i}=\sum_{j=1}^{N} p_{i j}^{2} \lambda_{j}^{k}$
- Does not depend on the choice of the spectral decomposition
- Spectral measure $\sum_{i=1}^{N} \delta_{\lambda_{i}}=\sum_{i=1}^{N} \mu_{i}\left(k\right.$-th moment $\left.=\operatorname{tr}\left(A^{k}\right)\right)$

In the literature

■ Asymptotic distribution of random matrices spectra

- Benjamini-Schramm convergence of rooted random graphs
- Limit theorems on star graphs and comb graphs

- Reconstruction conjecture: Is a (non-regular) graph characterized by its rooted spectral measures?

Coupling

Goal: Define an "interesting" joint measure μ on \mathbb{R}^{N} with margins μ_{1}, \ldots, μ_{N}

Coupling

Goal: Define an "interesting" joint measure μ on \mathbb{R}^{N} with margins μ_{1}, \ldots, μ_{N}

Let S_{N} be the set of permutations on $\{1, \ldots, N\}$ and π the signed measure on S_{N} defined by

$$
\pi(\{\sigma\})=\epsilon(\sigma) \prod_{j=1}^{N} p_{j \sigma(j)}, \sigma \in S_{N}
$$

where $\epsilon($.$) is the signature.$

For $\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right)$ the spectrum of A, let

$$
\lambda_{\sigma}=\left(\lambda_{\sigma(1)}, \ldots, \lambda_{\sigma(n)}\right), \sigma \in S_{N}
$$

Definition

The joint spectral measure μ is the pushforwd measure of π by $\sigma \mapsto \lambda_{\sigma}$:

$$
\mu\left(\left\{\lambda_{\sigma}\right\}\right)=\sum_{\tau: \lambda_{\tau}=\lambda_{\sigma}} \epsilon(\tau) \prod_{j=1}^{N} p_{j \tau(j)}
$$

- $\operatorname{Supp}(\mu)=\left\{\lambda_{\sigma}, \sigma \in S_{N}\right\}$
- Distinct eigenvalues: $\mu\left(\left\{\lambda_{\sigma}\right\}\right)=\pi(\{\sigma\})=\epsilon(\sigma) \prod_{j=1}^{N} p_{j \sigma(j)}$
- Does not depend on the spectral decomposition
- μ is a quasi-probability: $\mu\left(\left\{\lambda_{\sigma}, \sigma \in S_{N}\right\}\right)=1$

Multivariate moments

let

- $m\left[k_{1}, \ldots, k_{N}\right]$ is the multivariate moment

$$
m\left[k_{1}, \ldots, k_{N}\right]=\int_{\mathbb{R}^{N}} x_{1}^{k_{1}} \ldots x_{N}^{k_{N}} d \mu\left(x_{1}, \ldots, x_{N}\right)
$$

- $A\left[k_{1}, \ldots, k_{N}\right]$ is the $N \times N$ whose i-th column is the i-th column oof $A^{k_{i}}, i=1, \ldots, N$:

$$
A\left[k_{1}, \ldots, k_{N}\right]=\left[\left[\begin{array}{c}
\left(A^{k_{1}}\right)_{11} \\
\vdots \\
\left(A^{k_{1}}\right)_{N 1}
\end{array}\right] \cdots\left[\begin{array}{c}
\left(A^{k_{N}}\right)_{1 N} \\
\vdots \\
\left(A^{k_{N}}\right)_{N N}
\end{array}\right]\right]
$$

Lemma

For all $k_{1}, \ldots, k_{N} \in \mathbb{N}$,

$$
m\left[k_{1}, \ldots, k_{N}\right]=\operatorname{det}\left(A\left[k_{1}, \ldots, k_{N}\right]\right)
$$

Proof:

- $m\left[k_{1}, \ldots, k_{N}\right]=\sum_{\sigma \in S_{N}} \lambda_{\sigma(1)}^{k_{1}} \ldots \lambda_{\sigma(n)}^{k_{N}} \mu\left(\left\{\lambda_{\sigma}\right\}\right)$

Lemma

For all $k_{1}, \ldots, k_{N} \in \mathbb{N}$,

$$
m\left[k_{1}, \ldots, k_{N}\right]=\operatorname{det}\left(A\left[k_{1}, \ldots, k_{N}\right]\right)
$$

Proof:

$$
m\left[k_{1}, \ldots, k_{N}\right]=\sum_{\sigma \in S_{N}} \lambda_{\sigma(1)}^{k_{1}} \ldots \lambda_{\sigma(n)}^{k_{N}} \mu\left(\left\{\lambda_{\sigma}\right\}\right)=\sum_{\sigma \in S_{N}} \epsilon(\sigma) \prod_{1=1}^{N} p_{i \sigma(i)} \lambda_{\sigma(i)}^{k_{i}}
$$

Lemma

For all $k_{1}, \ldots, k_{N} \in \mathbb{N}$,

$$
m\left[k_{1}, \ldots, k_{N}\right]=\operatorname{det}\left(A\left[k_{1}, \ldots, k_{N}\right]\right)
$$

Proof:

- $m\left[k_{1}, \ldots, k_{N}\right]=\sum_{\sigma \in S_{N}} \lambda_{\sigma(1)}^{k_{1}} \ldots \lambda_{\sigma(n)}^{k_{N}} \mu\left(\left\{\lambda_{\sigma}\right\}\right)=\sum_{\sigma \in S_{N}} \epsilon(\sigma) \prod_{1=1}^{N} p_{i \sigma(i)} \lambda_{\sigma(i)}^{k_{i}}$
- $A^{k} P=P \Lambda^{k} \Longrightarrow\left(A^{k} P\right)_{i j}=p_{i j} \lambda_{j}^{k}$ and

$$
m\left[k_{1}, \ldots, k_{N}\right]=\sum_{\sigma \in S_{N}} \epsilon(\sigma) \prod_{i=1}^{N}\left(A^{k_{i}} P\right)_{i \sigma(i)}=\operatorname{det}\left(A\left[k_{1}, \ldots, k_{N}\right] P\right)
$$

Corollary

The margins of μ are the rooted spectral measures μ_{i}.

Proof:

μ_{i} is characterized by its moments, with for all $k \in \mathbb{N}$:

$$
\int_{\mathbb{R}} x^{k} d \mu_{i}(x)=\left(A^{k}\right)_{i i}=\operatorname{det}(A[0, \ldots, 0, \underset{\substack{i \text {-th position }}}{k, 0, \ldots, 0])}
$$

Corollary

The margins of μ are the rooted spectral measures μ_{i}.

Proof:
μ_{i} is characterized by its moments, with for all $k \in \mathbb{N}$:

$$
\int_{\mathbb{R}} x^{k} d \mu_{i}(x)=\left(A^{k}\right)_{i i}=\operatorname{det}(A[0, \ldots, 0, \underset{\substack{i \text {-th position }}}{k, 0, \ldots, 0])}
$$

Let $X=\left(X_{1}, \ldots, X_{N}\right)$ be a vector with (quasi)-distribution μ, we write

$$
\mathbb{E}(g(X))=\int_{\mathbb{R}^{N}} g(x) d \mu(x) \quad \text { e.g. } \quad m\left[k_{1}, \ldots, k_{N}\right]=\mathbb{E}\left(X_{1}^{k_{1}} \ldots X_{N}^{k_{N}}\right)
$$

Proposition

If A is the adjacency matrix of a simple graph,

$$
\operatorname{var}(X)=L
$$

where L is the graph Laplacian.

Preuve:

- $\operatorname{var}\left(X_{i}\right)=\left(A^{2}\right)_{i i}=\operatorname{deg}(i)$
- $\operatorname{cov}\left(X_{i}, X_{j}\right)=\mathbb{E}\left(X_{i} X_{j}\right)-\mathbb{E}\left(X_{i}\right) \mathbb{E}\left(X_{j}\right)$

$$
=\operatorname{det}\left(\left[\begin{array}{cc}
0 & a_{i j} \\
a_{i j} & 0
\end{array}\right]\right)=-a_{i j}^{2}=-a_{i j} \quad(i \neq j)
$$

More generally: $\operatorname{cov}\left(X_{i}^{k}, X_{j}^{k}\right)=-\left(A^{k}\right)_{i j}^{2}$

Probabilities on subsets

For $u, v \subset\{1, \ldots, N\}$, let $M_{u v}$ be the submatrix of M restricted to $(i, j), i \in u, j \in v$.

Proposition

If the eigenvalues λ_{j} are distinct, for all subsets $u, v \subset\{1, \ldots, N\}$ of equal sizes,

$$
\mathbb{P}\left(\left\{X_{i}, i \in u\right\}=\left\{\lambda_{j}, j \in v\right\}\right)=\operatorname{det}\left(P_{u v}\right)^{2}
$$

- If u, v are singletons,

$$
\mathbb{P}\left(X_{i}=\lambda_{j}\right)=p_{i j}^{2}
$$

- The proof uses the Jacobi identity

$$
\operatorname{det}\left(P_{\overline{u u}}\right)=\operatorname{det}\left(P_{\overline{u u}}^{-1}\right)=\frac{\operatorname{det}\left(P_{u u}\right)}{\operatorname{det}(P)}
$$

where $\bar{u}=\{1, \ldots, N\} \backslash u$.

Weak convergence

Let $\left\{G_{n}, n \in \mathbb{N}\right\}$ be a sequence of nested graphs built by merging n copies of a graph G at a commun vertex o :

Weak convergence

Let $\left\{G_{n}, n \in \mathbb{N}\right\}$ be a sequence of nested graphs built by merging n copies of a graph G at a commun vertex o :
$G_{1}=G$
G_{2}

etc...

Limit theorem

Theorem (Obata 2004)

Let $\mu_{o}^{(n)}$ be the spectral measure of G_{n} rooted at o,

$$
\sqrt{n} \mu_{o}^{(n)}(\sqrt{n} .) \underset{n \rightarrow \infty}{\longrightarrow} \frac{1}{2}\left(\delta_{-\sqrt{d_{o}}}+\delta_{\sqrt{d_{o}}}\right)
$$

where d_{o} is the degree of o in G.

- Only depends of the immediate neighborhood in G (through d_{o})
$■$ Letting $X_{o}^{(n)} \sim \mu_{o}^{(n)}: X_{o}^{(n)} / \sqrt{n} \xrightarrow[n \rightarrow \infty]{l o i} \sqrt{d_{o}} B$ with $B \sim \operatorname{Rad}(1 / 2)$

Generalization

The $G_{n}, n \in \mathbb{N}$ are built by merging n copies of G rooted at a commun subgraph G_{u} of p vertices $u=\{1, \ldots, p\}$:

Graph G_{n}

Adjacency matrix $A^{(n)}$

$$
\left[\begin{array}{cccc}
A_{u u} & A_{u \bar{u}} & \ldots & A_{u \bar{u}} \\
A_{\bar{u} u} & A_{\overline{u u}} & 0 & 0 \\
\vdots & 0 & \ddots & 0 \\
A_{\bar{u} u} & 0 & 0 & A_{\overline{u u}}
\end{array}\right]
$$

Theorem

Let $\mu^{(n)}$ be the joint spectral measure G_{n} and $\left(X_{1}^{(n)}, \ldots, X_{p}^{(n)}\right)$ a vector of the p quasi-random variables rooted at u,

$$
\frac{\left(X_{1}^{(n)}, \ldots, X_{p}^{(n)}\right)}{\sqrt{n}} \xrightarrow[n \rightarrow \infty]{d}\left(B_{1} \sqrt{Y_{1}}, \cdots, B_{p} \sqrt{Y_{p}}\right)
$$

where

- $\left(Y_{1}, \ldots, Y_{p}\right)$ is a quasi-random vector with distribution the joint spectral measure of $D=A_{u \bar{u}} A_{\bar{u} u}$
- B_{1}, \ldots, B_{p} are iid Rademacher $\operatorname{Rad}(1 / 2)$, independent from the Y_{i} 's
$D_{i j}=\#\left\{\right.$ neighbors in $G_{\bar{u}}$ to both i and $\left.j\right\}, i, j \in u$

Proof: (convergence of normalized moments)

- $m_{u}^{(n)}\left[k_{1}, \ldots, k_{p}\right]=\mathbb{E}\left[\left(\frac{X_{1}^{(n)}}{\sqrt{n}}\right)^{k_{1}} \ldots\left(\frac{X_{p}^{(n)}}{\sqrt{n}}\right)^{k_{p}}\right]=\operatorname{det}\left(\frac{A^{(n)}}{\sqrt{n}}\left[k_{1}, \ldots, k_{p}, 0, \ldots\right]\right)$
\Longrightarrow we study the convergence of $\left[\left(A^{(n)} / \sqrt{n}\right)^{k}\right]_{u u}$

Proof: (convergence of normalized moments)

- $m_{u}^{(n)}\left[k_{1}, \ldots, k_{p}\right]=\mathbb{E}\left[\left(\frac{X_{1}^{(n)}}{\sqrt{n}}\right)^{k_{1}} \ldots\left(\frac{X_{p}^{(n)}}{\sqrt{n}}\right)^{k_{p}}\right]=\operatorname{det}\left(\frac{A^{(n)}}{\sqrt{n}}\left[k_{1}, \ldots, k_{p}, 0, \ldots\right]\right)$
\Longrightarrow we study the convergence of $\left[\left(A^{(n)} / \sqrt{n}\right)^{k}\right]_{u u}$
$\square I+z A^{(n)}+z^{2} A^{(n)^{2}}+\ldots=\left[\begin{array}{cccc}I-z A_{u u} & A_{u \bar{u}} & \ldots & A_{u \bar{u}} \\ A_{\bar{u} u} & I-z A_{\overline{u \bar{u}}} & 0 & 0 \\ \vdots & 0 & \ddots & 0 \\ A_{\bar{u} u} & 0 & 0 & I-z A_{\overline{u \bar{u}}}\end{array}\right]^{-1}$

Proof: (convergence of normalized moments)

- $m_{u}^{(n)}\left[k_{1}, \ldots, k_{p}\right]=\mathbb{E}\left[\left(\frac{X_{1}^{(n)}}{\sqrt{n}}\right)^{k_{1}} \ldots\left(\frac{X_{p}^{(n)}}{\sqrt{n}}\right)^{k_{p}}\right]=\operatorname{det}\left(\frac{A^{(n)}}{\sqrt{n}}\left[k_{1}, \ldots, k_{p}, 0, \ldots\right]\right)$
\Longrightarrow we study the convergence of $\left[\left(A^{(n)} / \sqrt{n}\right)^{k}\right]_{u u}$
$\square I+z A^{(n)}+z^{2} A^{(n)^{2}}+\ldots=\left[\begin{array}{cccc}I-z A_{u u} & A_{u \bar{u}} & \ldots & A_{u \bar{u}} \\ A_{\bar{u} u} & I-z A_{\overline{u \bar{u}}} & 0 & 0 \\ \vdots & 0 & \ddots & 0 \\ A_{\bar{u} u} & 0 & 0 & I-z A_{\overline{u u}}\end{array}\right]^{-1}$
- Schur complement:

$$
\left[\begin{array}{cc}
A & B \\
B^{\top} & C
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\left(A-B C^{-1} B^{\top}\right)^{-1} & \cdot \\
\cdot & \cdot
\end{array}\right]
$$

$\square\left(\left(I-z A^{(n)}\right)^{-1}\right)_{u u}=\left(I-z A_{u u}-n z^{2} A_{u \bar{u}}\left(I-z A_{\overline{u u}}\right)^{-1} A_{\bar{u} u}\right)^{-1}$
$\square\left(\left(I-z A^{(n)}\right)^{-1}\right)_{u u}=\left(I-z A_{u u}-n z^{2} A_{u \bar{u}}\left(I-z A_{\overline{u u}}\right)^{-1} A_{\bar{u} u}\right)^{-1}$
$\square\left(\left(I-\frac{z}{\sqrt{n}} A^{(n)}\right)^{-1}\right)_{u u} \underset{n \rightarrow \infty}{\longrightarrow}\left(I-z^{2} D\right)^{-1}$
$\square\left(\left(I-z A^{(n)}\right)^{-1}\right)_{u u}=\left(I-z A_{u u}-n z^{2} A_{u \bar{u}}\left(I-z A_{\overline{u u}}\right)^{-1} A_{\bar{u} u}\right)^{-1}$
$\square\left(\left(I-\frac{z}{\sqrt{n}} A^{(n)}\right)^{-1}\right)_{u u} \underset{n \rightarrow \infty}{\longrightarrow}\left(I-z^{2} D\right)^{-1}$

- $m_{u}^{(n)}\left[k_{1}, \ldots, k_{p}\right] \underset{n \rightarrow \infty}{\longrightarrow}\left\{\begin{array}{cl}\operatorname{det}\left(\begin{array}{c}D\left[k_{1} / 2, \ldots, k_{p} / 2\right]\end{array}\right) & \begin{array}{l}\text { if } k_{1}, \ldots, k_{p} \text { are even } \\ 0\end{array} \\ \text { sinon }\end{array}\right.$

Some combinatorics properties

Let A be the adjacency matrix of a graph G

- $\left(A^{k}\right)_{i j}$ is the number of length k walks from i to j in G
- Matrix generating function of walks in G :

$$
z \mapsto(I-z A)^{-1}=I+z A+z^{2} A^{2}+\ldots
$$

Let \mathcal{C} be the set of simple cycles on G

Let $V(c)$ the set of vertices met by c and $|c|$ its length,

$$
c \in \mathcal{C} \Longleftrightarrow \#(V(c))=|c|
$$

Characteristic polynomial

$$
\operatorname{det}(I-z A)=\sum_{p \geq 0}(-1)^{p} \sum_{\substack{c_{1}, \ldots, c_{p} \in \mathcal{C} \\ V\left(c_{i}\right) \cap V\left(c_{j}\right)=\emptyset, i \neq j}} z^{\left|c_{1}\right|+\ldots+\left|c_{p}\right|}
$$

We denote by \mathcal{H} the set of "words" formed by simple cycles, under the commutation rule

$$
c c^{\prime}=c^{\prime} c \Longleftrightarrow V(c) \cap V\left(c^{\prime}\right)=\emptyset .
$$

$$
\begin{aligned}
& a b c \neq a c b \\
& a c b=c a b \\
& b c a=b a c \\
& \text { etc.. }
\end{aligned}
$$

We call hike an element of \mathcal{H}.

Proposition
The function

$$
\zeta(z):=\frac{1}{\operatorname{det}(I-z A)}=\sum_{h \in \mathcal{H}} z^{|h|}
$$

is the hikes generating function.

- $\zeta($.$) is the zeta function on \mathcal{H}$

■ $z \mapsto \operatorname{det}(I-z A)$ is the Möbius function

Remark

The closed walks on G are elements of \mathcal{H} with a unique right simple cycle.

Definition

An excursion on u in a graph G is a walk that starts and ends in u but avoids u in between.

Generating function:

$$
E_{u}(z)=?
$$

Definition

An excursion on u in a graph G is a walk that starts and ends in u but avoids u in between.

Generating function:

$$
E_{u}(z)=z A_{u u} \quad \ldots
$$

Definition

An excursion on u in a graph G is a walk that starts and ends in u but avoids u in between.

Generating function:

$$
E_{u}(z)=z A_{u u}+z^{2} A_{u \bar{u}} A_{\bar{u} u} \quad \ldots
$$

Definition

An excursion on u in a graph G is a walk that starts and ends in u but avoids u in between.

Generating function:

$$
\begin{aligned}
& E_{u}(z)=z A_{u u}+z^{2} A_{u \bar{u}} A_{\bar{u} u} \\
& \quad+\sum_{k \geq 3} z^{k} A_{u \bar{u}} A_{\bar{u} \bar{u}}^{k-2} A_{\bar{u} u}
\end{aligned}
$$

Generating function of the excursions on u

$$
E_{u}(z)=z A_{u u}+z^{2} A_{u \bar{u}}\left(I-z A_{\bar{u} u}\right)^{-1} A_{\bar{u} u}
$$

Generating function of the excursions on u

$$
\begin{gathered}
E_{u}(z)=z A_{u u}+z^{2} A_{u \bar{u}}\left(I-z A_{\overline{u u}}\right)^{-1} A_{\bar{u} u} \\
\Longleftrightarrow \\
I-E_{u}(z)=(I-z A)_{u u}-z^{2} A_{u \bar{u}}\left((I-z A)_{\overline{u u}}\right)^{-1} A_{\bar{u} u}
\end{gathered}
$$

Generating function of the excursions on u

$$
\begin{gathered}
E_{u}(z)=z A_{u u}+z^{2} A_{u \bar{u}}\left(I-z A_{\overline{u u}}\right)^{-1} A_{\bar{u} u} \\
\Longleftrightarrow \\
I-E_{u}(z)=(I-z A)_{u u}-z^{2} A_{u \bar{u}}\left((I-z A)_{\overline{u u}}\right)^{-1} A_{\bar{u} u} \\
\Longleftrightarrow \\
\left(I-E_{u}(z)\right)^{-1}=\left((I-z A)^{-1}\right)_{u u} \quad \text { (Schur complement) }
\end{gathered}
$$

Generating function of the excursions on u

$$
\begin{gathered}
E_{u}(z)=z A_{u u}+z^{2} A_{u \bar{u}}\left(I-z A_{\overline{u u}}\right)^{-1} A_{\bar{u} u} \\
\Longleftrightarrow \\
I-E_{u}(z)=(I-z A)_{u u}-z^{2} A_{u \bar{u}}\left((I-z A)_{\overline{u u}}\right)^{-1} A_{\bar{u} u} \\
\Longleftrightarrow \\
\left(I-E_{u}(z)\right)^{-1}=\left((I-z A)^{-1}\right)_{u u} \quad \text { (Schur complement) }
\end{gathered}
$$

Unique factorisation of a walk from u to u as a product of excursions

$$
I+E_{u}(z)+E_{u}(z)^{2}+\ldots=\left(I+z A+z^{2} A^{2}+\ldots\right)_{u u}
$$

Proposition

The function

$$
\zeta_{u}(z):=\frac{1}{\operatorname{det}\left(I-E_{u}(z)\right)}
$$

is the generating function of hikes whose right simple cycles all intersect u.

Or

$$
\zeta_{u}(z)=\operatorname{det}\left(\left((I-z A)^{-1}\right)_{u u}\right)=\mathbb{E}\left(\prod_{i \in u} \frac{1}{1-z X_{i}}\right)
$$

Combinatorical expression on the homogenous k-moments of $X_{i}, i \in u$.

