A Lanczos-like method for the time-ordered exponential

Pierre-Louis Giscard ${ }^{1}$ Stefano Pozza ${ }^{2}$

${ }^{1}$ Université du Littoral Côte d'Opale, Calais
${ }^{2}$ Charles University, Prague
WACA workshop, Calais May 27, 2021

P.-L.Giscard's program

Outline

- The $*$-product (a simple scalar example)
- The Path-sum method for the solution of a system of ODEs
- Lanczos as a way to transform a graph into a path.
- *-Lanczos + Path-sum: a new expression for the solution of a system of linear ODEs (time ordered exponential)
- Conclusion

Projects:

- PRIMUS research poject A Lanczos-like Method for the Time-Ordered Exponential, 2021-2023. www.starlanczos.cz
- ANR research project MAGICA - MAGnetic resonance techniques and Innovative Combinatorial Algebra, P.I.
C. Bonhomme, France, 2021-2025.

Scalar ODE

Consider the "simple" problem:

$$
\frac{d}{d t^{\prime}} u\left(t^{\prime}\right)=a\left(t^{\prime}\right) u\left(t^{\prime}\right), \quad u(t)=1
$$

a smooth and bounded.
The (obvious) solution is given by

$$
u\left(t^{\prime}\right)=\exp \left(\int_{t}^{t^{\prime}} a(\tau) \mathrm{d} \tau\right)
$$

We are going to show and alternative expression for the solution, which will be useful for large system of ODEs.

A new approach: the $*$-product

Let $\widetilde{d}\left(t^{\prime}, t\right), \widetilde{d}_{i}\left(t^{\prime}, t\right)$ smooth functions in $t^{\prime}, t \in I$. Consider the class $\mathrm{D}(I)$ of the distributions

$$
d\left(t^{\prime}, t\right)=\widetilde{d}\left(t^{\prime}, t\right) \Theta\left(t^{\prime}-t\right)+\sum_{i=0}^{N} \widetilde{d}_{i}\left(t^{\prime}, t\right) \delta^{(i)}\left(t^{\prime}-t\right),
$$

with $\widetilde{d}\left(t^{\prime}, t\right)$ smooth functions in t^{\prime}, t, Θ the Heaviside function. For $f_{1}, f_{2} \in \mathrm{D}(I)$ we define the convolution-like $*$-product as

$$
\left(f_{1} * f_{2}\right)\left(t^{\prime}, t\right):=\int_{-\infty}^{\infty} f_{1}\left(t^{\prime}, \tau\right) f_{2}(\tau, t) \mathrm{d} \tau,
$$

with identity $1_{*}:=\delta\left(t^{\prime}-t\right)$; c.f., [Volterra, Pérès, '28], [Schwartz, '78].
Remark: Volterra and Pérès did not have the distribution theory by Schwartz at their time!

Basics of the *-product

- $1_{*}:=\delta\left(t^{\prime}-t\right)$ is the identity;
- The dirac derivatives work nicely:

$$
\delta^{(i)}\left(t^{\prime}-t\right) * \delta^{(j)}\left(t^{\prime}-t\right)=\delta^{(j)}\left(t^{\prime}-t\right) * \delta^{(i)}\left(t^{\prime}-t\right)=\delta^{(i+j)}\left(t^{\prime}-t\right)
$$

- The $*$-inverse of δ^{\prime} is the Heaviside function, we use the convention:

$$
\Theta\left(t^{\prime}-t\right)= \begin{cases}1, & t^{\prime} \geq t \\ 0, & t^{\prime}<t\end{cases}
$$

i.e.,

$$
\Theta\left(t^{\prime}-t\right) * \delta^{\prime}\left(t^{\prime}-t\right)=\delta^{\prime}\left(t^{\prime}-t\right) * \Theta\left(t^{\prime}-t\right)=\delta\left(t^{\prime}-t\right)
$$

Basics of the *-product

Consider the subclass $\mathrm{Sm}_{\Theta}(I)$ of $\mathrm{D}(I)$:

$$
f\left(t^{\prime}, t\right)=\tilde{f}\left(t^{\prime}, t\right) \Theta\left(t^{\prime}-t\right)
$$

For $f_{1}, f_{2} \in \operatorname{Sm}_{\Theta}(I)$, the $*$-product between f_{1}, f_{2} simplifies to

$$
\left(f_{2} * f_{1}\right)\left(t^{\prime}, t\right)=\Theta\left(t^{\prime}-t\right) \int_{t}^{t^{\prime}} \tilde{f}_{2}\left(t^{\prime}, \tau\right) \tilde{f}_{1}(\tau, t) \mathrm{d} \tau
$$

- $\mathrm{D}(I)$ is closed under $*$ multiplication;
- $f \in \operatorname{Sm}_{\Theta}(I)$ is $*$-invertible in $\mathrm{D}(I)$ if $f\left(t^{\prime}, t^{\prime}\right) \neq 0$ for $t^{\prime} \in I$ (restrictive) and \widetilde{f} is separable.
The k th $*$-power $f^{* k}$ as the $k *$-products $f * f * \cdots * f,\left(f^{* 0}=\delta\right)$.

$$
\Theta^{* k}=\frac{\left(t^{\prime}-t\right)^{k-1}}{(k-1)!} \Theta\left(t^{\prime}-t\right) ; \quad\left(\delta^{(j)}\right)^{* k}=\delta^{(k j)}\left(t^{\prime}-t\right)
$$

ODE solution by *-product

$$
\frac{d}{d t^{\prime}} u\left(t^{\prime}\right)=\widetilde{a}\left(t^{\prime}\right) u\left(t^{\prime}\right), \quad u(t)=1, \quad t^{\prime} \geq t .
$$

Then the solution can be given as ([Giscard \& al., 2015])

$$
u\left(t^{\prime}\right)=\Theta\left(t^{\prime}, t\right) * R_{*}(a)\left(t^{\prime}, t\right)
$$

with $a\left(t^{\prime}, t\right)=\widetilde{a}\left(t^{\prime}\right) \Theta\left(t^{\prime}-t\right)$, and R_{*} the $*$-resolvent
$R_{*}(a)\left(t^{\prime}, t\right):=\left(1_{*}-a\right)^{*-1}\left(t^{\prime}, t\right)=\sum_{k=0}^{\infty} a^{* k}\left(t^{\prime}, t\right) ; \quad$ Neumann series
Note that the series converges when a is bounded.

Example

Consider the simple case $\widetilde{a}\left(t^{\prime}\right)=1, a\left(t^{\prime}, t\right)=\Theta\left(t^{\prime}-t\right)$. Then

$$
R_{*}(a)=\sum_{k=0}^{\infty} \Theta^{* k}
$$

Hence

$$
u\left(t^{\prime}\right)=\Theta * R_{*}(a)=\sum_{k=0}^{\infty} \Theta^{*(k+1)}=\sum_{k=0}^{\infty} \frac{\left(t^{\prime}-t\right)^{k}}{(k)!} \Theta\left(t^{\prime}-t\right)
$$

As expected, the solution is

$$
u\left(t^{\prime}\right)=\exp \left(t^{\prime}-t\right) \Theta\left(t^{\prime}-t\right)
$$

Systems of ODEs

Let $t^{\prime} \geq t \in I \subseteq \mathbb{R}, \mathrm{~A}\left(t^{\prime}\right)$ a time dependent matrix. The time-ordered exponential is the unique solution $\mathrm{U}\left(t^{\prime}, t\right)$ of

$$
\widetilde{\mathrm{A}}\left(t^{\prime}\right) \mathrm{U}\left(t^{\prime}, t\right)=\frac{d}{d t^{\prime}} \mathrm{U}\left(t^{\prime}, t\right), \quad \mathrm{U}(t, t)=\mathrm{I}_{N}
$$

If $\widetilde{\mathrm{A}}\left(\tau_{1}\right) \widetilde{\mathrm{A}}\left(\tau_{2}\right)=\widetilde{\mathrm{A}}\left(\tau_{2}\right) \widetilde{\mathrm{A}}\left(\tau_{1}\right)$ for all $\tau_{1}, \tau_{2} \in I$, then

$$
\mathrm{U}\left(t^{\prime}, t\right)=\exp \left(\int_{t}^{t^{\prime}} \widetilde{\mathrm{A}}(\tau) d \tau\right)
$$

U has generally no explicit form. Expression by ([Dyson, 1948])

$$
\mathrm{U}\left(t^{\prime}, t\right)=\mathcal{T} \exp \left(\int_{t}^{t^{\prime}} \widetilde{\mathrm{A}}(\tau) d \tau\right)
$$

with \mathcal{T} the time-ordering operator.

Time-ordered exponential

The time-ordering expression is more a notation as the action of the time-ordering operator is very difficult to evaluate.

- Applications: System dynamics (quantum dynamics); e.g., [Blanes \& al., 2009], [Giscard, Bonhomme, 2020]. Differential Riccati matrix equations (control theory, filter design); e.g., [Abou-Kandil et al., 2003].
We focus on expressions for U in terms of scalar integrals and differential equations. We will not talk about numerical methods.
- Classical approaches Perturbative methods (Floquet-based and Magnus series techniques), often prohibitively involved, e.g., [Blanes \& al., 2009];
- Path-sum approach: The expression has a finite number of scalar integro-differential equations, but its complexity can be too large; [Giscard \& al., 2015].

Solution by *-product

Nevertheless, the $*$-resolvent expression for the solution remains:

$$
U\left(t^{\prime}, t\right)=\Theta\left(t^{\prime}-t\right) * R_{*}(A)
$$

with

$$
R_{*}(A)\left(t^{\prime}, t\right)=\sum_{k=0}^{\infty}\left(\widetilde{A}\left(t^{\prime}\right) \Theta\left(t^{\prime}-t\right)\right)^{* k}
$$

where the $*$-product here is extended in the matrix-product sense.
The probelm is: How do we compute $R_{*}(A)$?
A possible solution: Path-sum method [Giscard \& al., 2015].

Example: the 2×2 case

Consider the time-dependent matrix

$$
A\left(t^{\prime}, t\right)=\left[\begin{array}{ll}
\widetilde{a}\left(t^{\prime}\right) & \widetilde{b}\left(t^{\prime}\right) \\
\widetilde{c}\left(t^{\prime}\right) & \widetilde{d}\left(t^{\prime}\right)
\end{array}\right] \Theta\left(t^{\prime}, t\right)
$$

In this simple case the Path-sum method gives:

$$
\begin{gathered}
p=b * R_{*}(d) * c \\
R_{*}(A)_{1,1}=R_{*}(p+a),
\end{gathered}
$$

from which we get the $(1,1)$ entry of the solution

$$
\begin{aligned}
U_{1,1}\left(t^{\prime}, t\right) & =\Theta\left(t^{\prime}-t\right) * R_{*}(A)_{1,1}\left(t^{\prime}, t\right) \\
& =\Theta *\left(1_{*}-a-b *\left(1_{*}-d\right)^{*-1} * c\right)^{*-1}
\end{aligned}
$$

Note the continued fraction structure of the solution.

Path-sum: main ideas

In general, Path-sum looks at A as an adjacency matrix of a weighted, generally undirected, time dependent graph.

Path-sum requires one to find all the simple cycles and simple paths of the graph. Then it expresses each entry of U as a branched continued fraction of finite depth and breadth.

The problem with Path-sum and a possible solution

When A is large and has no exploitable structure, finding all the simple cycles and simple paths is too expensive (\#P-complete).

Idea: Tridiagonalization

$$
\widetilde{A}\left(t^{\prime}\right)=\left[\begin{array}{llllll}
a & b & & & & \\
& c & & & & \\
& & d & & e & f \\
& & & & g & \\
& & & h & &
\end{array}\right]\left(t^{\prime}\right) \rightarrow \tilde{T}\left(t^{\prime}, t\right)=\left[\begin{array}{lllllll}
\star & \star & & & & \\
\star & \star & \star & & & \\
& \star & \star & \star & & \\
& & \star & \star & \star & \\
& & & \star & \star & \star \\
& & & & \star & \star
\end{array}\right]\left(t^{\prime}, t\right)
$$

ODEs with constant coefficients

Tridiagonalization for the simpler case where A is constant.
Let $\mathrm{A} \in \mathbb{C}^{N \times N}$ be a square matrix and $t^{\prime} \geq t \in I \subseteq \mathbb{R}$. The solution $\mathrm{U}\left(t^{\prime}, t\right) \in \mathbb{C}^{N \times N}$ of the system of ODEs

$$
\mathrm{A} U\left(t^{\prime}, t\right)=\frac{d}{d t^{\prime}} \mathrm{U}\left(t^{\prime}, t\right), \quad \mathrm{U}(t, t)=\mathrm{I}_{\mathrm{N}}
$$

can be expressed as

$$
\mathrm{U}\left(t^{\prime}, t\right)=\exp \left(\mathrm{A} \cdot\left(t^{\prime}-t\right)\right)
$$

(Symmetric) Lanczos method

Given a symmetric matrix $A \in \mathbb{R}^{N \times N}$ and a vector $v \neq 0$, Lanczos produces the orthogonal matrix $U_{m}=\left[u_{1}, \ldots, u_{m}\right]$, basis of the (polynomial) Krylov subspace

$$
\mathcal{K}_{m}(A, \mathrm{v}):=\operatorname{span}\left\{\mathrm{v}, A \mathrm{v}, \ldots, A^{m-1} \mathrm{v}\right\}
$$

Starting with $\mathrm{u}_{1}=\mathrm{v} /\|\mathrm{v}\|$, Lanczos is a Gram-Schmidt orthogonalization process defined by the recurrences

$$
\begin{aligned}
t_{j+1, j} \mathrm{u}_{j+1} & =A \mathrm{u}_{j}-\sum_{i=1}^{j} t_{i, j} \mathrm{u}_{i} \\
& =A u_{j}-t_{j, j} u_{j}-t_{j-1, j} u_{j-1}, \quad j=1, \ldots, m \\
& t_{i, j}=\mathrm{u}_{i}^{*} A \mathrm{u}_{j}, \quad t_{j+1, j}=\left\|\mathrm{u}_{j+1}\right\|
\end{aligned}
$$

(Symmetric) Lanczos method

The recurrences have the matrix form:

$$
A U_{m}=U_{m} T_{m}+t_{m+1, m} \mathbf{u}_{m+1} \mathrm{e}_{m}^{T},
$$

with T_{m} the $m \times m$ tridiagonal matrix with entries $t_{i, j}$ (e_{m} the m th vector of the canonical basis). By orthogonality we get

$$
T_{m}=U_{m}^{*} A U_{m}
$$

The matrix T_{m} plays two roles in the algorithm:

- It represents the orthogonalization process (coefficients $t_{i, j}$);
- It represents the action of A in the Krylov subspace $\mathcal{K}_{m}(A, v)$, i.e.,

$$
U_{m} T_{m} U_{m}^{*}=U_{m} U_{m}^{*} A U_{m} U_{m}^{*}
$$

Non-Hermitian Lanczos algorithm

Assume for simplicty $t=0$ and let v, w be vectors so that $w^{H} v \neq 0$. We aim to approximate

$$
w^{H} \mathrm{U}\left(t^{\prime}, 0\right) v=\mathrm{w}^{H} \exp \left(\mathrm{~A} t^{\prime}\right) v
$$

Consider the Krylov subspaces

$$
\operatorname{span}\left\{v, A v, \ldots, A^{n-1} v\right\}, \quad \operatorname{span}\left\{w, A^{H} w, \ldots,\left(A^{H}\right)^{n-1} w\right\} .
$$

Assuming the algorithm does not breakdown, non-Hermitian Lanczos computes the matrices

$$
\mathrm{V}_{n}=\left[\mathrm{v}_{0}, \ldots, \mathrm{v}_{n-1}\right], \quad \mathrm{W}_{n}=\left[\mathrm{w}_{0}, \ldots, \mathrm{w}_{n-1}\right]
$$

bases of the Krylov subspaces so that $\mathrm{W}_{n}^{H} \mathrm{~V}_{n}=\mathrm{I}_{n}$.
Remark: Arnoldi does not produce a tridiagonal matrix.

Non-Hermitian Lanczos algorithm

The $n \times n$ tridiagonal matrix defined as

$$
\mathrm{J}_{n}=\mathrm{W}_{n}^{H} \mathrm{~A} \mathrm{~V}_{n}
$$

satisfies the matching moment property ${ }^{1}$

$$
\mathrm{w}^{H} \mathrm{~A}^{k} \mathrm{v}=\mathrm{e}_{1}^{H}\left(\mathrm{~J}_{n}\right)^{k} \mathrm{e}_{1}, \quad k=0, \ldots, 2 n-1
$$

We get the approximation (model reduction)

$$
w^{H} \exp \left(A t^{\prime}\right) v \approx e_{1}^{H} \exp \left(J_{n} t^{\prime}\right) e_{1}
$$

e.g., [Golub, Meurant, 2010].

For $n=N$, we get the tridiagonalization of A, [Parlett, 1992],

$$
A=V_{N} J_{N} W_{N}^{H} \Longrightarrow \exp \left(\mathrm{~A} t^{\prime}\right)=V_{N} \exp \left(J_{n} t^{\prime}\right) W_{N}^{H}
$$

[^0]
Graph interpretation of Lanczos

- If $w=v=e_{j}$, the moment $e_{j}^{T} A^{k} e_{j}$ is the weighted \# of closed walks of length k from j to j in the original graph G; e.g., [Estrada, Rodriguez-Velazquez, 2005].
- The matching moment property says that the weighted \# of such closed walks is the same in G and P.
(We are working on this with Francesca Arrigo)

Simple example

Length 1 Length 2

$$
A=\left[\begin{array}{cccc}
1 & 1 & 1 & \cdots \\
1 & 0 & 1 & \cdots \\
1 & 1 & 0 & \cdots \\
\vdots & \vdots & \vdots &
\end{array}\right] \quad \rightarrow \quad T_{n}=\left[\begin{array}{ccc}
1 & \sqrt{2} & \\
\sqrt{(2)} & 1 & \ddots \\
& \ddots & \ddots
\end{array}\right]
$$

A new approach: the *-Lanczos algorithm

Let $\mathrm{A}\left(t^{\prime}\right)$ an $N \times N$ time-dependent matrix smooth in $t^{\prime} \in I$, and let v, w be time-independent vectors $\left(w^{H} \mathrm{v} \neq 0\right)$. Assuming no breakdown, the nth step of the $*$-Lanczos method gives

$$
V_{n}\left(t^{\prime}, t\right), W_{n}\left(t^{\prime}, t\right) \in \mathrm{D}(I)^{N \times n}, \quad T_{n}\left(t^{\prime}, t\right) \in \mathrm{D}(I)^{n \times n}
$$

so that $W_{n}\left(t^{\prime}, t\right)^{H} * V_{n}\left(t^{\prime}, t\right)=1_{*} \mathrm{I}_{n}$. T_{n} is tridiagonal and so that

$$
\mathrm{T}_{n}\left(t^{\prime}, t\right)=\mathrm{W}_{n}^{H}\left(t^{\prime}, t\right) * \mathrm{~A}\left(t^{\prime}\right) \Theta\left(t^{\prime}-t\right) * \mathrm{~V}_{n}\left(t^{\prime}, t\right)
$$

It also satisfies the $*$-matching moment property

$$
\mathrm{w}^{H}\left(\mathrm{~A}\left(t^{\prime}, t\right)\right)^{* k} v=\mathrm{e}_{1}^{H}\left(\mathrm{~T}_{n}\left(t^{\prime}, t\right)\right)^{* k} \mathrm{e}_{1}, \quad k=0, \ldots, 2 n-1 .
$$

[Giscard, P., 2020]. Hence:

$$
\sum_{k=0}^{\infty} w^{H} A^{* k} v \approx \sum_{k=0}^{\infty} e_{1}^{H}\left(T_{n}\right)^{* k} e_{1}
$$

*-Lanczos Algorithm

Initialize: $\mathrm{v}_{-1}=\mathrm{w}_{-1}=0, \mathrm{v}_{0}=\mathrm{v} 1_{*}, \mathrm{w}_{0}^{H}=\mathrm{w}^{H} 1_{*}$.
$\alpha_{0}=w^{H} A v$,
$w_{1}^{H}=w^{H} A-\alpha_{0} w^{H}$,
$\widehat{v}_{1}=A v-v \alpha_{0}$,
$\beta_{1}=w^{H} A^{* 2} v-\alpha_{0}^{* 2}$,
If β_{1} is not $*$-invertible, then stop, otherwise, $\mathrm{v}_{1}=\widehat{\mathrm{v}}_{1} * \beta_{1}^{*-1}$,

For $n=2, \ldots$

$$
\begin{aligned}
& \alpha_{n-1}=\mathrm{w}_{n-1}^{H} * \mathrm{~A} * \mathrm{v}_{n-1} \\
& \mathrm{w}_{n}^{H}=\mathrm{w}_{n-1}^{H} * \mathrm{~A}-\alpha_{n-1} * \mathrm{w}_{n-1}^{H}-\beta_{n-1} * \mathrm{w}_{n-2}^{H} \\
& \widehat{\mathrm{v}}_{n}=\mathrm{A} * \mathrm{v}_{n-1}-\mathrm{v}_{n-1} * \alpha_{n-1}-\mathrm{v}_{n-2} \\
& \beta_{n}=\mathrm{w}_{n}^{H} * \mathrm{~A} * \mathrm{v}_{n-1}
\end{aligned}
$$

If β_{n} is not $*$-invertible, then stop, otherwise,

$$
\mathrm{v}_{n}=\widehat{\mathrm{v}}_{n} * \beta_{n}^{*-1}
$$

end.

*-Lanczos + Path Sum method

We get the approximation (model reduction)

$$
w^{H} U\left(t^{\prime}, t\right) v \approx \Theta\left(t^{\prime}-t\right) * R_{*}\left(T_{n}\right)_{11}\left(t^{\prime}, t\right)
$$

The model reduction has to be interpreted in two way

- The size of T_{n} is much smaller, $n \ll N$;
- T_{n} is tridiagonal.

Going back to Path-sum

$$
\mathrm{T}_{N}\left(t^{\prime}, t\right):=\left[\begin{array}{cccc}
\alpha_{0}\left(t^{\prime}, t\right) & \delta\left(t^{\prime}-t\right) & & \\
\beta_{1}\left(t^{\prime}, t\right) & \alpha_{1}\left(t^{\prime}, t\right) & \ddots & \\
& \ddots & \ddots & \delta\left(t^{\prime}-t\right) \\
& & \beta_{N-1}\left(t^{\prime}, t\right) & \alpha_{N-1}\left(t^{\prime}-t\right)
\end{array}\right]
$$

From Path-sum method we have

$$
R_{*}\left(T_{n}\right)_{1,1}\left(t^{\prime}, t\right)=R_{*}\left(\alpha_{0}+R_{*}\left(\alpha_{1}+R_{*}\left(\alpha_{2}+\ldots\right) * \beta_{2}\right) * \beta_{1}\right)
$$

For $n=N$, we have exactness!

$$
\begin{aligned}
\mathrm{A}\left(t^{\prime}, t\right) \Theta\left(t^{\prime}-t\right) & =V_{N}\left(t^{\prime}, t\right) * \mathrm{~T}_{N}\left(t^{\prime}, t\right) * W_{N}^{H}\left(t^{\prime}, t\right) \\
U\left(t^{\prime}, t\right) & =\Theta\left(t^{\prime}-t\right) * R_{*}\left(T_{N}\right)_{11}\left(t^{\prime}, t\right)
\end{aligned}
$$

Properties

A time-dependent matrix $\mathrm{A}\left(t^{\prime}\right)$ can be $*$-tridiagonalized in $\mathrm{D}(I)$ if

- $\mathrm{A}\left(t^{\prime}\right)$ is smooth in I.
- $\mathrm{A}\left(t^{\prime}\right)$ can be tridiagonalized (in the classical sense) starting from the same initial vectors w, v for every $t^{\prime} \in I$; [Parlett, '92].

Error bound

Under the previous assumptions,

$$
\left|w^{H} U v-\Theta * \mathrm{R}_{*}\left(\mathrm{~T}_{n}\right)_{1,1}\right| \leq\left(C^{2 n}+D_{n}^{2 n}\right) \frac{\left(t^{\prime}-t\right)^{2 n}}{(2 n)!}
$$

with the finite coefficients

$$
C:=\sup _{t^{\prime} \in I}\left\|\tilde{A}\left(t^{\prime}\right)\right\|_{\infty}, \quad D_{n}:=\sup _{t^{\prime}, t \in I^{2}} \max _{0 \leq j \leq n-1}\left\{\left|\tilde{\alpha}_{j}\left(t^{\prime}, t\right)\right|,\left|\tilde{\beta}_{j}\left(t^{\prime}, t\right)\right|\right\}
$$

Example: time-dependent matrix

Consider the matrix
$\mathrm{A}=\left(\begin{array}{ccccc}\cos \left(t^{\prime}\right) & 0 & 1 & 2 & 1 \\ 0 & \cos \left(t^{\prime}\right)-t^{\prime} & 1-3 t^{\prime} & t^{\prime} & 0 \\ 0 & t^{\prime} & 2 t^{\prime}+\cos \left(t^{\prime}\right) & 0 & 0 \\ 0 & 1 & 2 t^{\prime}+1 & t^{\prime}+\cos \left(t^{\prime}\right) & t^{\prime} \\ t^{\prime} & -t^{\prime}-1 & -6 t^{\prime}-1 & 1-2 t^{\prime} & \cos \left(t^{\prime}\right)-2 t^{\prime}\end{array}\right)$.
The matrix does not commute with itself at different times and the corresponding differential system has no known analytical solution.

Example: time-dependent matrix

We get

$$
\mathrm{T}_{5}=\left(\begin{array}{ccccc}
\cos \left(t^{\prime}\right) \Theta & \delta & 0 & 0 & 0 \\
\frac{1}{2}\left(t^{\prime 2}-t^{2}\right) \Theta & \cos (t) \Theta & \delta & 0 & 0 \\
0 & t\left(t^{\prime}-t\right) \Theta & \widetilde{\alpha}_{2}\left(t^{\prime}, t\right) \Theta & \delta & 0 \\
0 & 0 & -\frac{1}{2}\left(3 t^{2}-4 t t^{\prime}+t^{\prime 2}\right) \Theta & \widetilde{\alpha}_{3}\left(t^{\prime}, t\right) \Theta & \delta \\
0 & 0 & 0 & \left(-2 t^{2}+3 t t^{\prime}-t^{\prime 2}\right) \Theta & \widetilde{\alpha}_{4}\left(t^{\prime}, t\right) \Theta
\end{array}\right)
$$

with

$$
\begin{aligned}
& \widetilde{\alpha}_{2}\left(t^{\prime}, t\right)=\left(t^{\prime}-t\right) \sin (t)+\cos (t), \\
& \widetilde{\alpha}_{3}\left(t^{\prime}, t\right)=\frac{1}{2}\left(4\left(t^{\prime}-t\right) \sin (t)-\left(\left(t-t^{\prime}\right)^{2}-2\right)\right) \cos (t), \\
& \widetilde{\alpha}_{4}\left(t^{\prime}, t\right)=\frac{1}{6}\left(\left(\left(t-t^{\prime}\right)^{2}-18\right)\left(t-t^{\prime}\right) \sin (t)+\left(6-9\left(t-t^{\prime}\right)^{2}\right) \cos (t)\right),
\end{aligned}
$$

Example: time-dependent matrix

With the *-biorthonormal basis

$$
V_{5}=\left(\begin{array}{ccccc}
\delta & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \delta^{(3)} & -2 \delta^{(4)} \\
0 & 0 & 0 & 0 & \delta^{(4)} \\
0 & 0 & \delta^{\prime \prime} & -\delta^{(3)} & \delta^{(4)} \\
0 & \delta^{\prime} & -2 \delta^{\prime \prime} & 2 \delta^{(3)} & -3 \delta^{(4)}
\end{array}\right), \quad W_{5}^{H}=\left(\begin{array}{ccccc}
\delta & 0 & 0 & 0 & 0 \\
0 & 0 & \Theta & 2 \Theta & \Theta \\
0 & \Theta^{* 2} & \Theta^{* 2} & \Theta^{* 2} & 0 \\
0 & \Theta^{* 3} & 2 \Theta^{* 3} & 0 & 0 \\
0 & 0 & \Theta^{* 4} & 0 & 0
\end{array}\right)
$$

The Dirac delta derivatives are coming from:

$$
\begin{array}{ll}
\beta_{1}^{*-1}=\frac{1}{t} \delta^{\prime}\left(t^{\prime}-t\right) * \delta^{\prime}\left(t^{\prime}-t\right), & \beta_{2}^{*-1}=\frac{1}{t^{\prime}} \delta^{\prime}\left(t^{\prime}-t\right) * \delta^{\prime}\left(t^{\prime}-t\right) \\
\beta_{3}^{*-1}=\frac{1}{t} \Theta\left(t^{\prime}-t\right) * \delta^{(3)}\left(t^{\prime}-t\right), & \beta_{4}^{*-1}=\frac{t^{\prime}}{t^{2}} \Theta\left(t^{\prime}-t\right) * \delta^{(3)}\left(t^{\prime}-t\right) .
\end{array}
$$

Numerical outlook

To produce a numerical algorithm from $*$-Lanczos we need to:

- Approximate the $*$-product in $\mathrm{Sm}_{\Theta}(I)$ (numerical integration);
- Approximate the $*$-inverse (inverse of a quadrature formula?)
- How do such approximations work together?
- It is possible to formulate such approximation in terms of product and inversion of triangular matrix (cheap).

Warning

Rounding errors deeply affect (classical) Lanczos by loss of orthogonality. We expect a similar behavior in any numerical implementation of $*$-Lanczos. This must be investigated before confidently relying on the method in a computational setting.

References:

- P-L. G., S. P., Lanczos-like method for the time-ordered exponential, arXiv:1909.03437 [math.NA].
- P-L. G., S. P., Lanczos-like algorithm for the time-ordered exponential: The *-inverse problem, Applications of Mathematics, 65(6):807-827, 2020.
- P-L. G., S. P., Tridiagonalization of systems of coupled linear differential equations with variable coefficients by a Lanczos-like method, Linear Algebra and its Applications, 624:153-173, 2020.

Thank you for your attention!

[^0]: ${ }^{1}$ Gragg, Lindquist (1983); Cybenko (1987); Freund, Hochbruck (1993); Strakoš (2009); P., Pranić, Strakoš (2017).

