A Lanczos-like method for the time-ordered

exponential

Pierre-Louis Giscard!  Stefano Pozza?

LUniversité du Littoral Céte d'Opale, Calais

2Charles University, Prague

WACA workshop, Calais
May 27, 2021

Pierre-Louis Giscard, Stefano Pozza



P.-L.Giscard’s program

Algebra Combinatorics
Number theory Operads Posets
Sieves
\ Trace
/ Monoids
WALKS THEORY
\ Loop erasing
Differential calculus Exact enumerations
Quantum dynamics Network analysis

Matrix functions

Pierre-Louis Giscard, Stefano Pozza



@ The *-product (a simple scalar example)
@ The Path-sum method for the solution of a system of ODEs
@ Lanczos as a way to transform a graph into a path.

@ x-Lanczos + Path-sum: a new expression for the solution of a
system of linear ODEs (time ordered exponential)

@ Conclusion

Projects:
@ PRIMUS research poject A Lanczos-like Method for the
Time-Ordered Exponential, 2021-2023. www.starlanczos.cz
@ ANR research project MAGICA — MAGnetic resonance

techniques and Innovative Combinatorial Algebra, P.l.
C. Bonhomme, France, 2021-2025.
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Scalar ODE

Consider the “simple” problem:

d AN / / _
Eu(t ) =a(t)hu(t), u(t)=1,

a smooth and bounded.
The (obvious) solution is given by

u(t') = exp ( /t ‘ a(T)dT> |

We are going to show and alternative expression for the solution,
which will be useful for large system of ODEs.
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A new approach: the x-product

Let d(t, t), dj(t', t) smooth functions in t/,t € I. Consider the
class D(/) of the distributions

N
d(t', 1) =d(t', )e(t' —t) + > _ di(t',)d(¢' — 1),
i=0

with d(t', t) smooth functions in ¢, t, © the Heaviside function.
For 1, f» € D(I) we define the convolution-like x-product as
(f H)(t. 1) = / At ) h(r, £) dr,

— 00

with identity 1, := 5(t’ — t); c.f., [Volterra, Péres, '28], [Schwartz, '78].

Remark: Volterra and Péres did not have the distribution theory by
Schwartz at their time!
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Basics of the *-product

o 1, :=§(t' — t) is the identity;

@ The dirac derivatives work nicely:
SOt —t)x6U (¢ —t) = 6U (¢ — t) %6 (¢' — t) = U (' —t)

@ The #-inverse of ¢’ is the Heaviside function, we use the

convention:
1, t'>t
O —t)=3 7 = ;
( ) 0, /<t

ie.,

Ot —t)xd' (' —t)=8(t' —t)xO(t' —t) =5(t' — t).
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Basics of the *-product

Consider the subclass Smg(/) of D(/):
f(t't) = f(t', )0t — t).
For f1, f, € Smg(/), the *-product between fi, f, simplifies to
t ~
(o A)(Z, 1) = O(t' - t)/ Bt ) (r 1) dr.
t
@ D(/) is closed under * multiplication;
o f € Smg(/) is *-invertible in D(/) if f(t',t') #0 for t' € |
(restrictive) and f is separable.

The kth *-power f*K as the k *-products f % f * --- x f, (0 = §).

o(t' — t); (50))*/( =5t —t).
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ODE solution by *-product

%u(t’) =a(thu(t), u(t)=1, t' >t

Then the solution can be given as ([Giscard & al., 2015])
u(t') = (', t) x Ry(a)(t', t),

with a(t’,t) = 3(t')©(t' — t), and R, the *-resolvent
R.(a)(t', t) :== (1, —a)* Y, t) = Za*k t';t); Neumann series

Note that the series converges when a is bounded.
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Consider the simple case a(t') =1, a(t’,t) = ©(t' — t). Then

R.(a) = i o*k,
k=0

Hence

x(k+1) _ (t _t)k /
u(t') = © % Ry(a) = Ze Z Ol o(t' — t).
k=0

As expected, the solution is

u(t') = exp(t’ — t)O(t' — t).
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Systems of ODEs

Let t' >t € | CR, A(t) a time dependent matrix. The
time-ordered exponential is the unique solution U(t/, t) of

A()U(E, £) = %U(t', 0, UL 1) = Iy.

If A(71)A(72) = A(m2)A(71) for all 71,7 € I, then

U(t, t) = exp (/tt A(7) dT) .

U has generally no explicit form. Expression by ([Dyson, 1948])

Ut £) = Texp (/t A(r) dT) .

with 7 the time-ordering operator.
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Time-ordered exponential

The time-ordering expression is more a notation as the action of
the time-ordering operator is very difficult to evaluate.

@ Applications: System dynamics (quantum dynamics); e.g.,
[Blanes & al., 2009], [Giscard, Bonhomme, 2020]. Differential Riccati
matrix equations (control theory, filter design); e.g.,
[Abou-Kandil et al., 2003].

We focus on expressions for U in terms of scalar integrals and
differential equations. We will not talk about numerical methods.

o Classical approaches Perturbative methods (Floquet-based
and Magnus series techniques), often prohibitively involved,
e.g., [Blanes & al., 2009];

@ Path-sum approach: The expression has a finite number of
scalar integro-differential equations, but its complexity can be
too large; [Giscard & al., 2015].
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Solution by *-product

Nevertheless, the *-resolvent expression for the solution remains:
U(t',t) = O(t' — t) x R.(A),

with

RAANE. ) =3 (Ar)e( - t))*k,

k=0
where the x-product here is extended in the matrix-product sense.

The probelm is: How do we compute R.(A)?

A possible solution: Path-sum method [Giscard & al., 2015].
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Example: the 2 x 2 case

Consider the time-dependent matrix
a(t')  b(t)
At t) = f( < o(t, t).
( ) [C(tl) d(tl) ( )
In this simple case the Path-sum method gives:
p=bxR.(d)*c,
R.(A)11 = Ri(p + a),
from which we get the (1,1) entry of the solution
U171(tl, t) = @(tl — t) * R*(A)Ll(tl, t)
= Ox(ly—a—bx (1, —d)* 1xc) L
Note the continued fraction structure of the solution.
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Path-sum: main ideas

In general, Path-sum looks at A as an adjacency matrix of a
weighted, generally undirected, time dependent graph.

Path-sum requires one to find all the simple cycles and simple
paths of the graph. Then it expresses each entry of U as a
branched continued fraction of finite depth and breadth.
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The problem with Path-sum and a possible solution

When A is large and has no exploitable structure, finding all the
simple cycles and simple paths is too expensive (#P-complete).

Idea: Tridiagonalization

a b * *
c * ok K
Ty d e f| = * k% ’
At') = P RGO T () Wy
*x k%
h * o
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ODEs with constant coefficients

Tridiagonalization for the simpler case where A is constant.

Let A € CNXN pe 3 square matrix and t' >t € | CR. The
solution U(t/, t) € CV*N of the system of ODEs

d
AU(Y. 1) = (1), Ut 1) = I,

can be expressed as

U(t',t) =exp (A-(t' —t)).
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(Symmetric) Lanczos method

Given a symmetric matrix A € RN*N and a vector v # 0, Lanczos
produces the orthogonal matrix U, = [ui,. .., um], basis of the
(polynomial) Krylov subspace

Km(A,v) = span{v, Av,..., A" 1 v} )

Starting with u; = v/||v||, Lanczos is a Gram-Schmidt
orthogonalization process defined by the recurrences

J
LUy = Auj— Y tigu;
i=1
:AUJ—thUJ—tJ_lJUJ_l, j=1...,m

tij =uiAu;, i1 = [lujall
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(Symmetric) Lanczos method

The recurrences have the matrix form:
AU = Uny Ty + ¢t r
m mlm m+1,mUm+1€p,,

with T, the m x m tridiagonal matrix with entries t; ; (em the mth
vector of the canonical basis). By orthogonality we get

T = USAUp,.

The matrix T, plays two roles in the algorithm:
@ It represents the orthogonalization process (coefficients t; ;);

@ It represents the action of A in the Krylov subspace K, (A, V),
ie.,

Un TmUs = UnUSA Un Uz,
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Non-Hermitian Lanczos algorithm

Assume for simplicty t = 0 and let v, w be vectors so that
wHv #£ 0. We aim to approximate

wHU(t',0)v = w" exp(At') v.
Consider the Krylov subspaces
span{v,Av,..., A" 1y}, span{w, Afw, ... (AF)""lw}.

Assuming the algorithm does not breakdown, non-Hermitian
Lanczos computes the matrices

Vn: [V07---,Vn—1]7 Wn: [W07'--’Wn—1]
bases of the Krylov subspaces so that WHV,, = I,,.

Remark: Arnoldi does not produce a tridiagonal matrix.
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Non-Hermitian Lanczos algorithm

The n x n tridiagonal matrix defined as
Jo=WHAV,,
satisfies the matching moment property!
whARy = et (J)Ker, k=0,...,2n—1.
We get the approximation (model reduction)
wexp(At)v ~ el exp(J,t)er;

e.g., [Golub, Meurant, 2010].
For n = N, we get the tridiagonalization of A, [Parlett, 1992],

A= VyInWl = exp(At') = Viy exp(J,t') WY

!Gragg, Lindquist (1983); Cybenko (1987); Freund, Hochbruck (1993);
Strakos (2009); P., Prani¢, Strako$ (2017).
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Graph interpretation of Lanczos

G P

o If w=v =e;, the moment ejTAkej is the weighted # of
closed walks of length k from j to j in the original graph G;
e.g., [Estrada, Rodriguez-Velazquez, 2005].

@ The matching moment property says that the weighted # of
such closed walks is the same in G and P.

(We are working on this with Francesca Arrigo)
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A new approach: the x-Lanczos algorithm

Let A(t') an N x N time-dependent matrix smooth in t' € /, and
let v,w be time-independent vectors (w"v # 0). Assuming no
breakdown, the nth step of the x-Lanczos method gives

Va(t',t), W,o(t', t) e D(DV*" To(t',t) e D(1)™",
so that W, (t', t)" x V,(t',t) = 1.1,. T, is tridiagonal and so that
Ta(t' 1) = WH(H  t) « A(£)O(t — t) % V(L t).
It also satisfies the *-matching moment property
wh (A, ) v =ell (To(t, 1) e, k=0,...,2n—1.

[Giscard, P., 2020]. Hence:
oo o0
Z wH Ay ~ Z el (T,) " e.
k=0 k=0
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x-Lanczos Algorithm

Initialize: v_1 =w_3 =0, vo = v 1, wgl = WH].*.
ag = WHAV,
wh = whA — agw',
Vi =Av —vap,
B =wHA*2y — a5‘2,
If B1 is not x-invertible, then stop, otherwise,

= *—1
\%1 :V1*51 )

Forn=2,...
ap_1 = WnI-LI * Axvp_1,
wnH = w,,“"_1 * A —ap_1 % w,’;'_l — Bp_1 * wn"’_27
vn =A%Vp_1—Vp_1*Qp_1— Vn—2,
Bn :WnH *Axvp_q,
If Bn is not x-invertible, then stop, otherwise,
Vp = vn * Bn_lz

end.
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*-Lanczos + Path Sum method

We get the approximation (model reduction)

wHU(t' t)v =~ O(t' — t) * R(Tp)u(t, t),

The model reduction has to be interpreted in two way
@ The size of T, is much smaller, n << N;

e T, is tridiagonal.
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Going back to Path-sum

ao(t',t) O(t' —t)

TN(t,,t) — 51(t,7t) al(tlvt)

. 5(t' —t)
Bu-1(t'st) an-ai(t' —t)

From Path-sum method we have
R*(Tn)l,l(t/7 t) = R*(CMO =+ R*(Ozl =+ R*(Ocz + ... ) * 52) * 51);
For n = N, we have exactness!

A(t', )0t — t) = Vn(t', t) « Tn(t', t) « W (t, 1),
U(tl, t) = @(tl - t) * R*(TN)H(I'/, 1.').
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A time-dependent matrix A(t’) can be *-tridiagonalized in D(/) if
e A(t') is smooth in /.

e A(t") can be tridiagonalized (in the classical sense) starting
from the same initial vectors w, v for every t’ € [; [Parlett, '92].

Under the previous assumptions,

(t/ _ t)zn

H 2n 2n
‘w UV—@*R*(Tn)l,l‘S (C +D") (2n)! ’

with the finite coefficients

C = sup|A(t)llo, Do = sup max {|a;(t" )L, F(, 1)}

t'el t/ tel? 0<j<n—
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Example: time-dependent matrix

Consider the matrix

cos(t') 0 1 2 1
0 cos(t') — t/ 1-3¢ t 0
A= 0 t 2t + cos(t') 0 0
0 1 2t +1 t' + cos(t') t
t/ —t'—1 —6t' —1 1-2t"  cos(t')—2t

The matrix does not commute with itself at different times and the
corresponding differential system has no known analytical solution.
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Example: time-dependent matrix

We get
cos(t')© 5 0 0 0
1(t?-t)0  cos(t)® 5 0 0
Ts= 0 t(t'—t)© ax(t', 1) ] 0 ,
0 0 —1(3t°—4tt'+t%)© as(t’, 1) )
0 0 0 (=2t 13t —t?)O  au(t,t)0
with

Go(t',t) = (t' — t)sin(t) + cos(t),
(4(# — t)sin(t) — ((t P 2)) cos(t),
(=) —18) (£ = t)sin(t) + (6 — 9(t — ¢')?) cos(t)) ,

as(t',t) =

Q= N =

as(t', t) =
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Example: time-dependent matrix

With the *-biorthonormal basis

5 0 0 0 0 § 0 0 0 o0
0 0 0 s 2@ 0 0 © 20 ©

Vs=| 0 o o 0 5@ , wWi=|[ 0 o2 o2 e? o
0o 0 & =& &4 0 3% 202 0 0

0 & —25" 284 354 0 0 ©e* 0 o0

The Dirac delta derivatives are coming from:

Bt = fd(t—t)*d(t—t) Bt = fd(t—t)*d(t t)

*x—1 1 *—1 tl

: :?e(t’—t)*ﬁ(t’—t), - t2e(t’—t)*6(3 (t' — 1)
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Numerical outlook

To produce a numerical algorithm from x-Lanczos we need to:
@ Approximate the *-product in Smg(/) (numerical integration);
@ Approximate the x-inverse (inverse of a quadrature formula?)
@ How do such approximations work together?

@ It is possible to formulate such approximation in terms of
product and inversion of triangular matrix (cheap).

Warning

Rounding errors deeply affect (classical) Lanczos by loss of
orthogonality. We expect a similar behavior in any numerical
implementation of #-Lanczos. This must be investigated before
confidently relying on the method in a computational setting.
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Thank you for your attention!
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