A Lanczos-like method for the time-ordered exponential

Pierre-Louis Giscard¹ Stefano Pozza²

¹Université du Littoral Côte d'Opale, Calais

²Charles University, Prague

WACA workshop, Calais May 27, 2021

P.-L.Giscard's program

Outline

- The *-product (a simple scalar example)
- The Path-sum method for the solution of a system of ODEs
- Lanczos as a way to transform a graph into a path.
- *-Lanczos + Path-sum: a new expression for the solution of a system of linear ODEs (time ordered exponential)
- Conclusion

Projects:

- PRIMUS research poject A Lanczos-like Method for the Time-Ordered Exponential, 2021-2023. www.starlanczos.cz
- ANR research project MAGICA MAGnetic resonance techniques and Innovative Combinatorial Algebra, P.I.
 C. Bonhomme, France, 2021-2025.

Scalar ODE

Consider the "simple" problem:

$$\frac{d}{dt'}u(t')=a(t')u(t'),\quad u(t)=1,$$

a smooth and bounded.

The (obvious) solution is given by

$$u(t') = \exp\left(\int_t^{t'} a(\tau) d\tau\right).$$

We are going to show and alternative expression for the solution, which will be useful for large system of ODEs.

A new approach: the *-product

Let $\widetilde{d}(t',t)$, $\widetilde{d}_i(t',t)$ smooth functions in $t',t\in I$. Consider the class $\mathrm{D}(I)$ of the distributions

$$d(t',t) = \widetilde{d}(t',t)\Theta(t'-t) + \sum_{i=0}^{N} \widetilde{d}_{i}(t',t)\delta^{(i)}(t'-t),$$

with $\widetilde{d}(t',t)$ smooth functions in t',t, Θ the Heaviside function. For $f_1,f_2\in \mathrm{D}(I)$ we define the convolution-like *-product as

$$(f_1*f_2)(t',t):=\int_{-\infty}^{\infty}f_1(t',\tau)f_2(\tau,t)\,\mathrm{d}\tau,$$

with identity $1_*:=\delta(t'-t)$; c.f., [Volterra, Pérès, '28], [Schwartz, '78].

Remark: Volterra and Pérès did not have the distribution theory by Schwartz at their time!

Basics of the *-product

- $1_* := \delta(t' t)$ is the identity;
- The dirac derivatives work nicely:

$$\delta^{(i)}(t'-t)*\delta^{(j)}(t'-t) = \delta^{(j)}(t'-t)*\delta^{(i)}(t'-t) = \delta^{(i+j)}(t'-t)$$

• The *-inverse of δ' is the Heaviside function, we use the convention:

$$\Theta(t'-t) = \left\{ egin{array}{ll} 1, & t' \geq t \ 0, & t' < t \end{array}
ight. ;$$

i.e.,

$$\Theta(t'-t)*\delta'(t'-t) = \delta'(t'-t)*\Theta(t'-t) = \delta(t'-t).$$

Basics of the *-product

Consider the subclass $Sm_{\Theta}(I)$ of D(I):

$$f(t',t) = \tilde{f}(t',t)\Theta(t'-t).$$

For $f_1, f_2 \in Sm_{\Theta}(I)$, the *-product between f_1, f_2 simplifies to

$$(f_2*f_1)(t',t) = \Theta(t'-t) \int_t^{t'} \tilde{f}_2(t',\tau) \tilde{f}_1(\tau,t) d\tau.$$

- D(I) is closed under * multiplication;
- $f \in Sm_{\Theta}(I)$ is *-invertible in D(I) if $f(t', t') \neq 0$ for $t' \in I$ (restrictive) and \widetilde{f} is separable.

The kth *-power f^{*k} as the k *-products $f * f * \cdots * f$, $(f^{*0} = \delta)$.

$$\Theta^{*k} = \frac{(t'-t)^{k-1}}{(k-1)!} \Theta(t'-t); \quad \left(\delta^{(j)}\right)^{*k} = \delta^{(kj)}(t'-t).$$

ODE solution by *-product

$$\frac{d}{dt'}u(t')=\widetilde{a}(t')u(t'),\quad u(t)=1,\quad t'\geq t.$$

Then the solution can be given as ([Giscard & al., 2015])

$$u(t') = \Theta(t',t) * R_*(a)(t',t),$$

with $a(t',t) = \widetilde{a}(t')\Theta(t'-t)$, and R_* the *-resolvent

$$R_*(a)(t',t) := (1_* - a)^{*-1}(t',t) = \sum_{k=0}^{\infty} a^{*k}(t',t);$$
 Neumann series

Note that the series converges when a is bounded.

Example

Consider the simple case $\widetilde{a}(t')=1$, $a(t',t)=\Theta(t'-t)$. Then

$$R_*(a) = \sum_{k=0}^{\infty} \Theta^{*k}.$$

Hence

$$u(t') = \Theta * R_*(a) = \sum_{k=0}^{\infty} \Theta^{*(k+1)} = \sum_{k=0}^{\infty} \frac{(t'-t)^k}{(k)!} \Theta(t'-t).$$

As expected, the solution is

$$u(t') = \exp(t'-t)\Theta(t'-t).$$

Systems of ODEs

Let $t' \ge t \in I \subseteq \mathbb{R}$, A(t') a time dependent matrix. The time-ordered exponential is the unique solution U(t', t) of

$$\widetilde{\mathsf{A}}(t')\mathsf{U}(t',t)=rac{d}{dt'}\mathsf{U}(t',t),\quad \mathsf{U}(t,t)=\mathsf{I}_{N}.$$

If $\widetilde{\mathsf{A}}(\tau_1)\widetilde{\mathsf{A}}(\tau_2)=\widetilde{\mathsf{A}}(\tau_2)\widetilde{\mathsf{A}}(\tau_1)$ for all $\tau_1,\tau_2\in I$, then

$$\mathsf{U}(t',t) = \mathsf{exp}\left(\int_t^{t'} \widetilde{\mathsf{A}}(au) \, d au\right).$$

U has generally no explicit form. Expression by ([Dyson, 1948])

$$\mathsf{U}(t',t) = \mathcal{T} \exp\left(\int_t^{t'} \widetilde{\mathsf{A}}(au) \, d au\right).$$

with \mathcal{T} the time-ordering operator.

Time-ordered exponential

The time-ordering expression is more a notation as the action of the time-ordering operator is very difficult to evaluate.

 Applications: System dynamics (quantum dynamics); e.g., [Blanes & al., 2009], [Giscard, Bonhomme, 2020]. Differential Riccati matrix equations (control theory, filter design); e.g., [Abou-Kandil et al., 2003].

We focus on expressions for U in terms of scalar integrals and differential equations. We will not talk about numerical methods.

- Classical approaches Perturbative methods (Floquet-based and Magnus series techniques), often prohibitively involved, e.g., [Blanes & al., 2009];
- Path-sum approach: The expression has a finite number of scalar integro-differential equations, but its complexity can be too large; [Giscard & al., 2015].

Solution by *-product

Nevertheless, the *-resolvent expression for the solution remains:

$$U(t',t) = \Theta(t'-t) * R_*(A),$$

with

$$R_*(A)(t',t) = \sum_{k=0}^{\infty} \left(\widetilde{A}(t')\Theta(t'-t)\right)^{*k},$$

where the *-product here is extended in the matrix-product sense.

The probelm is: How do we compute $R_*(A)$?

A possible solution: Path-sum method [Giscard & al., 2015].

Example: the 2×2 case

Consider the time-dependent matrix

$$A(t',t) = \begin{bmatrix} \widetilde{a}(t') & \widetilde{b}(t') \\ \widetilde{c}(t') & \widetilde{d}(t') \end{bmatrix} \Theta(t',t).$$

In this simple case the Path-sum method gives:

$$p = b * R_*(d) * c,$$

 $R_*(A)_{1,1} = R_*(p + a),$

from which we get the (1,1) entry of the solution

$$U_{1,1}(t',t) = \Theta(t'-t) * R_*(A)_{1,1}(t',t)$$

= $\Theta * (1_* - a - b * (1_* - d)^{*-1} * c)^{*-1}.$

Note the continued fraction structure of the solution.

Path-sum: main ideas

In general, Path-sum looks at A as an adjacency matrix of a weighted, generally undirected, time dependent graph.

Path-sum requires one to find all the simple cycles and simple paths of the graph. Then it expresses each entry of \boldsymbol{U} as a branched continued fraction of finite depth and breadth.

The problem with Path-sum and a possible solution

When A is large and has no exploitable structure, finding all the simple cycles and simple paths is too expensive (#P-complete).

Idea: Tridiagonalization

ODEs with constant coefficients

Tridiagonalization for the simpler case where A is constant.

Let $A \in \mathbb{C}^{N \times N}$ be a square matrix and $t' \geq t \in I \subseteq \mathbb{R}$. The solution $U(t', t) \in \mathbb{C}^{N \times N}$ of the system of ODEs

$$AU(t',t) = \frac{d}{dt'}U(t',t), \quad U(t,t) = I_N,$$

can be expressed as

$$\mathsf{U}(t',t) = \exp\left(\mathsf{A}\cdot(t'-t)\right).$$

(Symmetric) Lanczos method

Given a symmetric matrix $A \in \mathbb{R}^{N \times N}$ and a vector $\mathbf{v} \neq 0$, Lanczos produces the orthogonal matrix $U_m = [\mathbf{u}_1, \dots, \mathbf{u}_m]$, basis of the (polynomial) Krylov subspace

$$\mathcal{K}_m(A, v) := \operatorname{span}\{v, Av, \ldots, A^{m-1}v\}.$$

Starting with $u_1=v/\|v\|$, Lanczos is a Gram-Schmidt orthogonalization process defined by the recurrences

$$t_{j+1,j}u_{j+1} = Au_j - \sum_{i=1}^{J} t_{i,j}u_i$$

= $Au_j - t_{j,j}u_j - t_{j-1,j}u_{j-1}, \quad j = 1, ..., m.$
$$t_{i,j} = u_i^*Au_j, \quad t_{j+1,j} = ||u_{j+1}||.$$

(Symmetric) Lanczos method

The recurrences have the matrix form:

$$AU_m = U_m T_m + t_{m+1,m} \mathbf{u}_{m+1} \mathbf{e}_m^T,$$

with T_m the $m \times m$ tridiagonal matrix with entries $t_{i,j}$ (e_m the mth vector of the canonical basis). By orthogonality we get

$$T_m = U_m^* A U_m$$
.

The matrix T_m plays two roles in the algorithm:

- It represents the orthogonalization process (coefficients $t_{i,j}$);
- It represents the action of A in the Krylov subspace $\mathcal{K}_m(A, \mathbf{v})$, i.e.,

$$U_m T_m U_m^* = U_m U_m^* A U_m U_m^*.$$

Non-Hermitian Lanczos algorithm

Assume for simplicity t = 0 and let v, w be vectors so that $w^H v \neq 0$. We aim to approximate

$$w^H U(t', 0) v = w^H \exp(At') v.$$

Consider the Krylov subspaces

$$span\{v, Av, ..., A^{n-1}v\}, span\{w, A^Hw, ..., (A^H)^{n-1}w\}.$$

Assuming the algorithm does not breakdown, non-Hermitian Lanczos computes the matrices

$$V_n = [v_0, \dots, v_{n-1}], \quad W_n = [w_0, \dots, w_{n-1}]$$

bases of the Krylov subspaces so that $W_n^H V_n = I_n$.

Remark: Arnoldi does not produce a tridiagonal matrix.

Non-Hermitian Lanczos algorithm

The $n \times n$ tridiagonal matrix defined as

$$\mathsf{J}_n = \mathsf{W}_n^H \mathsf{A} \mathsf{V}_n,$$

satisfies the matching moment property¹

$$w^{H}A^{k}v = e_{1}^{H}(J_{n})^{k}e_{1}, k = 0,...,2n-1.$$

We get the approximation (model reduction)

$$w^H \exp(A t') v \approx e_1^H \exp(J_n t') e_1;$$

e.g., [Golub, Meurant, 2010].

For n = N, we get the tridiagonalization of A, [Parlett, 1992],

$$A = V_N J_N W_N^H \implies \exp(A t') = V_N \exp(J_n t') W_N^H.$$

¹Gragg, Lindquist (1983); Cybenko (1987); Freund, Hochbruck (1993); Strakoš (2009); P., Pranić, Strakoš (2017).

Graph interpretation of Lanczos

- If $w = v = e_j$, the moment $e_j^T A^k e_j$ is the weighted # of closed walks of length k from j to j in the original graph G; e.g., [Estrada, Rodriguez-Velazquez, 2005].
- The matching moment property says that the weighted # of such closed walks is the same in G and P.

(We are working on this with Francesca Arrigo)

Simple example

Length 1 Length 2

Length 3

$$A = \begin{bmatrix} 1 & 1 & 1 & \cdots \\ 1 & 0 & 1 & \cdots \\ 1 & 1 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix} \quad \rightarrow \quad T_n = \begin{bmatrix} 1 & \sqrt{2} & & \\ \sqrt{(2)} & 1 & \cdots & \\ & \ddots & \ddots & \end{bmatrix}$$

A new approach: the *-Lanczos algorithm

Let A(t') an $N \times N$ time-dependent matrix smooth in $t' \in I$, and let v, w be time-independent vectors ($w^H v \neq 0$). Assuming no breakdown, the nth step of the *-Lanczos method gives

$$V_n(t',t), W_n(t',t) \in \mathrm{D}(I)^{N \times n}, \quad T_n(t',t) \in \mathrm{D}(I)^{n \times n},$$

so that $W_n(t',t)^H * V_n(t',t) = 1_* I_n$. T_n is tridiagonal and so that

$$\mathsf{T}_n(t',t) = \mathsf{W}_n^H(t',t) * \mathsf{A}(t') \Theta(t'-t) * \mathsf{V}_n(t',t).$$

It also satisfies the *-matching moment property

$$\mathsf{w}^H (\mathsf{A}(t',t))^{*k} \mathsf{v} = \mathsf{e}_1^H (\mathsf{T}_n(t',t))^{*k} \mathsf{e}_1, \quad k = 0, \dots, 2n-1.$$

[Giscard, P., 2020]. Hence:

$$\sum_{k=0}^{\infty} w^H A^{*k} v \approx \sum_{k=0}^{\infty} e_1^H (T_n)^{*k} e_1.$$

*-Lanczos Algorithm

Initialize:
$$v_{-1} = w_{-1} = 0$$
, $v_0 = v \, 1_*$, $w_0^H = w^H 1_*$. $\alpha_0 = w^H A \, v$, $w_1^H = w^H A - \alpha_0 \, w^H$, $\widehat{v}_1 = A \, v - v \, \alpha_0$, $\beta_1 = w^H A^{*2} \, v - \alpha_0^{*2}$, If β_1 is not *-invertible, then stop, otherwise, $v_1 = \widehat{v}_1 * \beta_1^{*-1}$, For $n = 2, \ldots$
$$\alpha_{n-1} = w_{n-1}^H * A * v_{n-1}, \\ w_n^H = w_{n-1}^H * A - \alpha_{n-1} * w_{n-1}^H - \beta_{n-1} * w_{n-2}^H$$
, $\widehat{v}_n = A * v_{n-1} - v_{n-1} * \alpha_{n-1} - v_{n-2}$, $\beta_n = w_n^H * A * v_{n-1}$, If β_n is not *-invertible, then stop, otherwise, $v_n = \widehat{v}_n * \beta_n^{*-1}$,

end.

*-Lanczos + Path Sum method

We get the approximation (model reduction)

$$w^{H}U(t',t)v\approx\Theta(t'-t)*R_{*}(T_{n})_{11}(t',t),$$

The model reduction has to be interpreted in two way

- The size of T_n is much smaller, n << N;
- T_n is tridiagonal.

Going back to Path-sum

From Path-sum method we have

$$R_*(T_n)_{1,1}(t',t) = R_*(\alpha_0 + R_*(\alpha_1 + R_*(\alpha_2 + \dots) * \beta_2) * \beta_1);$$

For n = N, we have exactness!

$$A(t',t)\Theta(t'-t) = V_N(t',t) * T_N(t',t) * W_N^H(t',t),$$

$$U(t',t) = \Theta(t'-t) * R_*(T_N)_{11}(t',t).$$

Properties

A time-dependent matrix A(t') can be *-tridiagonalized in D(I) if

- A(t') is smooth in I.
- A(t') can be tridiagonalized (in the classical sense) starting from the same initial vectors w, v for every $t' \in I$; [Parlett, '92].

Error bound

Under the previous assumptions,

$$\left| \mathsf{w}^H \mathsf{U} \, \mathsf{v} - \Theta * \mathsf{R}_* (\mathsf{T}_n)_{1,1} \right| \leq \left(C^{2n} + D_n^{2n} \right) \frac{(t'-t)^{2n}}{(2n)!},$$

with the finite coefficients

$$C:=\sup_{t'\in I}\|\tilde{\mathsf{A}}(t')\|_{\infty},\quad D_n:=\sup_{t',t\in I^2}\max_{0\leq j\leq n-1}\big\{|\tilde{\alpha}_j(t',t)|,|\tilde{\beta}_j(t',t)|\big\}.$$

Example: time-dependent matrix

Consider the matrix

$$\mathsf{A} = \begin{pmatrix} \cos(t') & 0 & 1 & 2 & 1 \\ 0 & \cos(t') - t' & 1 - 3t' & t' & 0 \\ 0 & t' & 2t' + \cos(t') & 0 & 0 \\ 0 & 1 & 2t' + 1 & t' + \cos(t') & t' \\ t' & -t' - 1 & -6t' - 1 & 1 - 2t' & \cos(t') - 2t' \end{pmatrix}.$$

The matrix does not commute with itself at different times and the corresponding differential system has no known analytical solution.

Example: time-dependent matrix

We get

$$\mathsf{T}_5 \!\!=\!\! \begin{pmatrix} \cos(t')\Theta & \delta & 0 & 0 & 0 \\ \frac{1}{2}(t'^2 \!\!-\! t^2)\Theta & \cos(t)\Theta & \delta & 0 & 0 \\ 0 & t(t' \!\!-\! t)\!\Theta & \widetilde{\alpha}_2(t',t)\!\Theta & \delta & 0 \\ 0 & 0 & -\frac{1}{2}(3t^2 \!\!-\! 4tt' \!\!+\! t'^2)\!\Theta & \widetilde{\alpha}_3(t',t)\!\Theta & \delta \\ 0 & 0 & 0 & (-2t^2 \!\!+\! 3tt' \!\!-\! t'^2)\!\Theta & \widetilde{\alpha}_4(t',t)\!\Theta \end{pmatrix}\!,$$

with

$$\begin{split} \widetilde{\alpha}_2(t',t) &= (t'-t)\sin(t) + \cos(t), \\ \widetilde{\alpha}_3(t',t) &= \frac{1}{2} \left(4(t'-t)\sin(t) - \left((t-t')^2 - 2 \right) \right) \cos(t), \\ \widetilde{\alpha}_4(t',t) &= \frac{1}{6} \left(\left((t-t')^2 - 18 \right) (t-t')\sin(t) + \left(6 - 9(t-t')^2 \right) \cos(t) \right), \end{split}$$

Example: time-dependent matrix

With the *-biorthonormal basis

$$\mathsf{V}_5 = \left(\begin{array}{cccccc} \delta & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \delta^{(3)} & -2\delta^{(4)} \\ 0 & 0 & 0 & 0 & \delta^{(4)} \\ 0 & 0 & \delta'' & -\delta^{(3)} & \delta^{(4)} \\ 0 & \delta' & -2\delta'' & 2\delta^{(3)} & -3\delta^{(4)} \end{array} \right), \quad \mathsf{W}_5^H = \left(\begin{array}{ccccccc} \delta & 0 & 0 & 0 & 0 \\ 0 & 0 & \Theta & 2\Theta & \Theta \\ 0 & \Theta^{*2} & \Theta^{*2} & \Theta^{*2} & 0 \\ 0 & \Theta^{*3} & 2\Theta^{*3} & 0 & 0 \\ 0 & 0 & \Theta^{*4} & 0 & 0 \end{array} \right)$$

The Dirac delta derivatives are coming from:

$$\begin{split} \beta_1^{*-1} &= \frac{1}{t} \delta'(t'-t) * \delta'(t'-t), \quad \beta_2^{*-1} &= \frac{1}{t'} \delta'(t'-t) * \delta'(t'-t) \\ \beta_3^{*-1} &= \frac{1}{t} \Theta(t'-t) * \delta^{(3)}(t'-t), \quad \beta_4^{*-1} &= \frac{t'}{t^2} \Theta(t'-t) * \delta^{(3)}(t'-t). \end{split}$$

Numerical outlook

To produce a numerical algorithm from *-Lanczos we need to:

- Approximate the *-product in $Sm_{\Theta}(I)$ (numerical integration);
- Approximate the *-inverse (inverse of a quadrature formula?)
- How do such approximations work together?
- It is possible to formulate such approximation in terms of product and inversion of triangular matrix (cheap).

Warning

Rounding errors deeply affect (classical) Lanczos by loss of orthogonality. We expect a similar behavior in any numerical implementation of *-Lanczos. This must be investigated before confidently relying on the method in a computational setting.

References:

- P-L. G., S. P., Lanczos-like method for the time-ordered exponential, arXiv:1909.03437 [math.NA].
- P-L. G., S. P., Lanczos-like algorithm for the time-ordered exponential: The *-inverse problem, Applications of Mathematics, 65(6):807–827, 2020.
- P-L. G., S. P., Tridiagonalization of systems of coupled linear differential equations with variable coefficients by a Lanczos-like method, Linear Algebra and its Applications, 624:153–173, 2020.

Thank you for your attention!