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Trace monoids

Definition
A trace monoidM is given by:

a set S of generator,
a set I of pairs of commuting generators called independence relations.

We denoteM =< S | I >.

Example: The set of natural integers greater than two with multiplication
is the trace monoid with generators the primes and no independence
relations: (N \ {0, 1} ,×) =< P |P2 >.
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Trace monoids

Trace monoids ⇐⇒ graphs

The independence graph is the graph with vertex set S and edge set I.

The dependence graph is the complementary of its independence
graph.

Example: M =< a, b, c , d | ac = ca, bd = db >

Independence graph Dependence graph

a b

cd

a b

cd
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Cartier-Foata monoids

Let G = (V ,E ) be a digraph.

Definition
The Cartier-Foata monoid of G, is the trace monoid defined by:

MG =< E | {(wij ,wkl) ; i 6= k} > .

Example: I = E × E \ {(wab,wad)}

a

b

c

d

e

1

2 31 2

31

2

3

4

5

6

6

1

2

3

4

5

wabwbcwde = wbcwdewab

but
wabwbcwcawadwdewea 6= wbcwcawadwdeweawab
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Hike monoids

A hike of G is an element wi1j1 · · ·winjn ∈MG such that for every v ∈ V

# {k | ik = v} = # {k | jk = v} .

Hikes form a sub-monoid ofMG .

Proposition (Hike monoid)
This sub-monoid is isomorphic to the trace monoid with generators the
induced cycles of G and with independence relations the pairs of disjoint
cycles.
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Hike monoids

Example:

a

b

c

d

e

a
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e f

g
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Hike monoids

Remark:
(N \ {0, 1} ,×) is a hike monoid:

2 3 5

• • •

a

b

c ⇐⇒ a c → wloss multidigraphs
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Divisibility

d , h ∈ H.
d divides h if there exists h′ such that h = dh′. We denote such h′ by
h′ = h

d

Example:

a bc

d e

c1
c2

c3

c4 c5

Divisors of c1c4c3c2c5c2:

1,
c1, c4, c3,

c4c5, c1c3c2c2
. . .

Remark: Usual division on N \ {0, 1}.
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Hike incidence algebra

Hike incidence algebra: F = G → R endowed with

f ∗ g(h) =
∑
d |h

f (d)g

(
h

d

)
.

To f ∈ F we associate Sf (s) =
∑

h∈H e−s`(h)f (h)h.

Proposition

Sf (s)Sg(s) = Sf ∗ g(s)
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Hike monoid H,

associated (multi)digraph G = (V ,E )

W : formal square matrix of size #V defined by:

W [i , j ] =

{
0 if (i , j) 6∈ E

mi ,jwi ,j if (i , j) appears mi ,j times in E
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Möbius function

δ the unit: δ(1) = 1 and δ(h) = 0 for h 6= 1,
1 the function constant equal to 1,
µ the Möbius function: inverse of 1 for the Dirichlet convolution:

µ ∗ 1 = δ,

Ω : h 7→ number of primes in prime decomposition.

Proposition ([2])

µ(h) =


1 if h = 1

(−1)Ω(h) if h is self-avoiding
0 else.

In particular, on N µ coincides with the number theoretic Möbius function.
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Möbius function

Proposition ([1])

Sµ = det(Id − e−sW ),∑
h∈H

h = det(Id −W )−1.

Remark: Other determinantal expressions [3].
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Walk von Mangoldt function [1]

The walk von Mangoldt function Λ : H → N is defined as the number of
contiguous representations of a hike:

Λ(h) = # {w walk in G |w = h inMG}

Example:

a

b c d

e f

g

3 2

1

4 53 4

5
1

2

4 5

1
2

3

5 1

2
3

4

Λ(wedwdcwcewfgwgf ) = 0

Λ(wcbwbcwcewedwdc) = 3

On N, Λ(h) =

{
`(p) if h = pk with p prime
0 else.
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Walk von Mangoldt function [1]

Denote by ζ the series S1.

Proposition ([1])

SΛ(s) = −ζ
′(s)

ζ(s)
,

log ζ(s) =
∑
h∈H

e−s`(h) Λ(h)

`(h)
h.

Analogous to number theory, replacing length by logarithm.
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Totally additive functions

A function f ∈ F is totally additive if f (hh′) = f (h) + f (h′),∀h, h′ ∈ H.

Proposition ([1])
For f a totally additive function,

f ∗ µ(h) =

{
f (c) if h walk with c its unique prime right-divisor
0 else.

On N, we recover the number theoretic version:

f ∗ µ(n) =

{
f (p) if n = pk

0 else.
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Map G → H(G).

We say that the digraph G represents the trace monoidM ifM = H(G)

Injectivity: link between digraphs representing the same trace monoid ?
Surjectivity: which trace monoid are representables ?
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Injectivity

Some transformations:
Remove edges outside cycles and isolated vertices.

Quotient by edges which are sole out/in going.

a

b

c

d e →

a

b

c

e

If all cycles containing v also contain v ′, ’jump’ v .

a

b

c d →
a

b

c d
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Injectivity

Observation: Every vertex in G correspond to a clique in the dependence
graph of H(G).

Conjecture: Let G be a (multi)digraph. Let C be a minimal number of
cliques covering H(G). Then there exists a multidigraph G′ with #C

vertices such that H(G) = H(G′).
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First observations

H(G t G′) = H(G) tH(G′) −→ restrict to connected graphs.

First number of representable connected graphs (up to isomorphism):
1, 1, 2, 5, 15, 58, 265. Not in oeis.
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Some patterns
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Algorithm

LetM be a trace monoid.
Let C be a minimal set of cliques covering the dependence monoid of
M.
Let P be the poset on

{⋂
k∈S k |S ⊆ C

}
ordered by inclusion.

Let f : P → N be the map defined by f (K ) = #K \
⋃

K ′<K K ′.
For every pair intersecting pair of cliques k , k ′ ∈ C, let mkk ′ and mk ′k

be formal variables.
Let S be the following system:

∀K ∈ P,
∑

(k1,...,kn)∈Cn
∩ki=K

mk1k2 · · ·mkl−1klmklk1 = f (K )
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Algorithm

Conjecture: The system S has a solution in N if and only ifM is
representable. Furthermore one of the solutions is such that the

multidigraph G over C and where the edge (k , k ′) appears mkk ′ times is
such that H(G) =M
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Other trails

• New idea of algorithm by Jean Fromentin.

• Talk with Xiaolin Zeng.
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Hike incidence algebra

Proof: f , g ∈ F

Sf (s)Sg(s) =
∑
h∈H

e−s`(h)g(h)h
∑
h∈H

e−s`(h)g(h)h

=
∑

h,h′∈H
e−s`(h)f (h)he−s`(h

′)g(h′)h′

=
∑

h,h′∈H
e−s`(hh

′)f (h)g(h′)hh′

=
∑
h∈H

e−s`(h)

∑
d |h

f (d)g

(
h

d

) h

=
∑
h∈H

e−s`(h)f ∗ g(h)h
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Totally multiplicative functions

A function f ∈ F is totally additive if f (hh′) = f (h)f (h′), ∀h, h′ ∈ H.

Proposition ([1])
The inverse of a totally multiplicative function f for the Dirichlet
convolution is given by

f −1 = µf .

In term of series:
∑

h∈H e−s`(h)f (h)h = 1∑
h∈H e−s`(h)µ(h)f (h)h

,

Generalization of MacMahon’s master theorem.
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Bidirected digraphs

A bidirected digraphs G is a digraph without loops and such that
(i , j) ∈ G ⇐⇒ (j , i) ∈ G.

Theorem ([1])
The map G → H(G) restricted to bidirected digraphs is injective up to
isomorphism except for K3 and K1,5.
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