Trace monoids, hike monoids and number theory

Theo Karaboghossian

Joint work with Pierre-Louis Giscard and Jean Fromentin

WACA, Calais

27/05/2021

Table of contents

- Trace and hikes monoids
- 2 Hikes properties and number theory
 - Divisibility and incidence algebra
 - Examples
- Two problems
 - Injectivity
 - Surjectivity

Table of contents

- Trace and hikes monoids
- 2 Hikes properties and number theory
 - Divisibility and incidence algebra
 - Examples
- Two problems
 - Injectivity
 - Surjectivity

Definition

A trace monoid \mathcal{M} is given by:

- a set S of generator,
- ullet a set ${\mathcal I}$ of pairs of commuting generators called *independence relations*.

We denote $\mathcal{M} = \langle S | \mathcal{I} \rangle$.

Definition

A trace monoid \mathcal{M} is given by:

- a set S of generator,
- ullet a set ${\mathcal I}$ of pairs of commuting generators called *independence relations*.

We denote $\mathcal{M} = \langle S | \mathcal{I} \rangle$.

Example: The set of natural integers greater than two with multiplication is the trace monoid with generators the primes and no independence relations: $(\mathbb{N}\setminus\{0,1\},\times)=<\mathbb{P}\,|\,\mathbb{P}^2>$.

 $\mathsf{Trace}\ \mathsf{monoids}\ \Longleftrightarrow\ \mathsf{graphs}$

Trace monoids \iff graphs

ullet The independence graph is the graph with vertex set S and edge set \mathcal{I} .

Trace monoids \iff graphs

- ullet The *independence graph* is the graph with vertex set S and edge set \mathcal{I} .
- The *dependence graph* is the complementary of its independence graph.

Trace monoids \iff graphs

- The independence graph is the graph with vertex set S and edge set \mathcal{I} .
- The dependence graph is the complementary of its independence graph.

Example:
$$\mathcal{M} = \langle a, b, c, d | ac = ca, bd = db \rangle$$

Independence graph Dependence graph

Let $\mathcal{G} = (V, E)$ be a digraph.

Definition

The Cartier-Foata monoid of G, is the trace monoid defined by:

$$\mathcal{M}_{\mathcal{G}} = \langle E \mid \{(w_{ij}, w_{kl}); i \neq k\} \rangle.$$

Let $\mathcal{G} = (V, E)$ be a digraph.

Definition

The Cartier-Foata monoid of G, is the trace monoid defined by:

$$\mathcal{M}_{\mathcal{G}} = \langle E \mid \{(w_{ij}, w_{kl}); i \neq k\} \rangle.$$

Example: $\mathcal{I} = E \times E \setminus \{(w_{ab}, w_{ad})\}$

Let $\mathcal{G} = (V, E)$ be a digraph.

Definition

The Cartier-Foata monoid of G, is the trace monoid defined by:

$$\mathcal{M}_{\mathcal{G}} = \langle E \mid \{(w_{ij}, w_{kl}); i \neq k\} \rangle.$$

Example: $\mathcal{I} = E \times E \setminus \{(w_{ab}, w_{ad})\}$

WabWbc Wde

Let $\mathcal{G} = (V, E)$ be a digraph.

Definition

The Cartier-Foata monoid of G, is the trace monoid defined by:

$$\mathcal{M}_{\mathcal{G}} = \langle E \mid \{(w_{ij}, w_{kl}); i \neq k\} \rangle.$$

Example: $\mathcal{I} = E \times E \setminus \{(w_{ab}, w_{ad})\}$

 $W_{ab}W_{bc}W_{de} = W_{bc}W_{de}W_{ab}$

Let $\mathcal{G} = (V, E)$ be a digraph.

Definition

The Cartier-Foata monoid of G, is the trace monoid defined by:

$$\mathcal{M}_{\mathcal{G}} = \langle E \mid \{(w_{ij}, w_{kl}); i \neq k\} \rangle.$$

Example: $\mathcal{I} = E \times E \setminus \{(w_{ab}, w_{ad})\}$

$$w_{ab}w_{bc}w_{de}=w_{bc}w_{de}w_{ab}$$
 but $w_{ab}w_{bc}w_{ca}w_{ad}w_{de}w_{ca}$

 $W_{ab}W_{bc}W_{ca}W_{ad}W_{de}W_{ea}$

Let $\mathcal{G} = (V, E)$ be a digraph.

Definition

The Cartier-Foata monoid of G, is the trace monoid defined by:

$$\mathcal{M}_{G} = \langle E | \{(w_{ii}, w_{kl}); i \neq k\} \rangle$$
.

Example: $\mathcal{I} = E \times E \setminus \{(w_{ab}, w_{ad})\}$

$$w_{ab}w_{bc}w_{de} = w_{bc}w_{de}w_{ab}$$
 but

 $W_{ab}W_{bc}W_{ca}W_{ad}W_{de}W_{ea} \neq W_{bc}W_{ca}W_{ad}W_{de}W_{ea}W_{ab}$

A hike of $\mathcal G$ is an element $w_{i_1j_1}\cdots w_{i_nj_n}\in \mathcal M_{\mathcal G}$ such that for every $v\in V$

$$\# \{k \mid i_k = v\} = \# \{k \mid j_k = v\}.$$

Hikes form a sub-monoid of $\mathcal{M}_{\mathcal{G}}$.

A hike of $\mathcal G$ is an element $w_{i_1j_1}\cdots w_{i_nj_n}\in \mathcal M_{\mathcal G}$ such that for every $v\in V$

$$\# \{k \mid i_k = v\} = \# \{k \mid j_k = v\}.$$

Hikes form a sub-monoid of $\mathcal{M}_{\mathcal{G}}$.

Proposition (Hike monoid)

This sub-monoid is isomorphic to the trace monoid with generators the induced cycles of $\mathcal G$ and with independence relations the pairs of disjoint cycles.

Example:

Example:

Remark:

• $(\mathbb{N} \setminus \{0,1\}, \times)$ is a hike monoid:

• •

Remark:

• $(\mathbb{N} \setminus \{0,1\}, \times)$ is a hike monoid:

Table of contents

- Trace and hikes monoids
- Hikes properties and number theory
 - Divisibility and incidence algebra
 - Examples
- Two problems
 - Injectivity
 - Surjectivity

Table of contents

- Trace and hikes monoids
- Hikes properties and number theory
 - Divisibility and incidence algebra
 - Examples
- Two problems
 - Injectivity
 - Surjectivity

 $d,h\in\mathcal{H}.$ d divides h if there exists h' such that h=dh'. We denote such h' by $h'=\frac{h}{d}$

 $d,h\in\mathcal{H}.$ d divides h if there exists h' such that h=dh'. We denote such h' by $h'=rac{h}{d}$

Example:

Divisors of $c_1c_4c_3c_2c_5c_2$:

 $d,h\in\mathcal{H}.$ d divides h if there exists h' such that h=dh'. We denote such h' by $h'=rac{h}{d}$

Example:

Divisors of $c_1c_4c_3c_2c_5c_2$: 1,

 $d,h\in\mathcal{H}.$ d divides h if there exists h' such that h=dh'. We denote such h' by $h'=\frac{h}{d}$

Example:

Divisors of $c_1c_4c_3c_2c_5c_2$: 1, c_1, c_4, c_3 ,

 $d,h\in\mathcal{H}.$ d divides h if there exists h' such that h=dh'. We denote such h' by $h'=\frac{h}{d}$

Example:

Divisors of $c_1c_4c_3c_2c_5c_2$: 1, $c_1, c_4, c_3,$ $c_4c_5, c_1c_3c_2c_2$

 $d,h\in\mathcal{H}.$ d divides h if there exists h' such that h=dh'. We denote such h' by $h'=\frac{h}{d}$

Example:

Divisors of $c_1c_4c_3c_2c_5c_2$: 1, $c_1, c_4, c_3,$ $c_4c_5, c_1c_3c_2c_2$

Remark: Usual division on $\mathbb{N} \setminus \{0,1\}$.

Hike incidence algebra

Hike incidence algebra: $\mathcal{F}=\mathcal{G}
ightarrow \mathbb{R}$ endowed with

$$f * g(h) = \sum_{d|h} f(d)g\left(\frac{h}{d}\right).$$

Hike incidence algebra

Hike incidence algebra: $\mathcal{F} = \mathcal{G} \to \mathbb{R}$ endowed with

$$f * g(h) = \sum_{d|h} f(d)g\left(\frac{h}{d}\right).$$

To $f \in \mathcal{F}$ we associate $\mathcal{S}f(s) = \sum_{h \in \mathcal{H}} e^{-s\ell(h)} f(h) h$.

Hike incidence algebra

Hike incidence algebra: $\mathcal{F}=\mathcal{G}
ightarrow \mathbb{R}$ endowed with

$$f * g(h) = \sum_{d|h} f(d)g\left(\frac{h}{d}\right).$$

To $f \in \mathcal{F}$ we associate $\mathcal{S}f(s) = \sum_{h \in \mathcal{H}} e^{-s\ell(h)} f(h) h$.

Proposition

$$Sf(s)Sg(s) = Sf * g(s)$$

Table of contents

- Trace and hikes monoids
- 2 Hikes properties and number theory
 - Divisibility and incidence algebra
 - Examples
- Two problems
 - Injectivity
 - Surjectivity

Hike monoid \mathcal{H} ,

associated (multi)digraph $\mathcal{G} = (V, E)$

Hike monoid \mathcal{H} ,

associated (multi)digraph
$$\mathcal{G} = (V, E)$$

W: formal square matrix of size #V defined by:

$$W[i,j] = \begin{cases} 0 & \text{if } (i,j) \notin E \\ m_{i,j}w_{i,j} & \text{if } (i,j) \text{ appears } m_{i,j} \text{ times in } E \end{cases}$$

Möbius function

- δ the unit: $\delta(1) = 1$ and $\delta(h) = 0$ for $h \neq 1$,
- 1 the function constant equal to 1,
- ullet μ the Möbius function: inverse of 1 for the Dirichlet convolution:

$$\mu * 1 = \delta,$$

• $\Omega: h \mapsto$ number of primes in prime decomposition.

Möbius function

- δ the unit: $\delta(1) = 1$ and $\delta(h) = 0$ for $h \neq 1$,
- 1 the function constant equal to 1,
- ullet μ the Möbius function: inverse of 1 for the Dirichlet convolution:

$$\mu * 1 = \delta$$
,

• $\Omega: h \mapsto$ number of primes in prime decomposition.

Proposition ([2])

$$\mu(h) = \left\{ egin{array}{ll} 1 & \mbox{if } h=1 \ (-1)^{\Omega(h)} & \mbox{if } h \mbox{ is self-avoiding} \ 0 & \mbox{else}. \end{array}
ight.$$

In particular, on \mathbb{N} μ coincides with the number theoretic Möbius function.

Möbius function

Proposition ([1])

$$\mathcal{S}\mu = \det(\mathit{Id} - e^{-s}W), \ \sum_{h \in \mathcal{H}} h = \det(\mathit{Id} - W)^{-1}.$$

Möbius function

Proposition ([1])

$$\mathcal{S}\mu = \det(\mathit{Id} - e^{-s}W), \ \sum_{h \in \mathcal{H}} h = \det(\mathit{Id} - W)^{-1}.$$

Remark: Other determinantal expressions [3].

The walk von Mangoldt function $\Lambda:\mathcal{H}\to\mathbb{N}$ is defined as the number of contiguous representations of a hike:

$$\Lambda(h) = \# \{ w \text{ walk in } \mathcal{G} \mid w = h \text{ in } \mathcal{M}_{\mathcal{G}} \}$$

The walk von Mangoldt function $\Lambda: \mathcal{H} \to \mathbb{N}$ is defined as the number of contiguous representations of a hike:

$$\Lambda(h) = \# \{ w \text{ walk in } \mathcal{G} \mid w = h \text{ in } \mathcal{M}_{\mathcal{G}} \}$$

$$\Lambda(w_{ed}w_{dc}w_{ce}w_{fg}w_{gf})=0$$

The walk von Mangoldt function $\Lambda: \mathcal{H} \to \mathbb{N}$ is defined as the number of contiguous representations of a hike:

$$\Lambda(h) = \# \{ w \text{ walk in } \mathcal{G} \mid w = h \text{ in } \mathcal{M}_{\mathcal{G}} \}$$

$$\Lambda(w_{ed}w_{dc}w_{ce}w_{fg}w_{gf})=0$$

$$\Lambda(w_{cb}w_{bc}w_{ce}w_{ed}w_{dc})=3$$

The walk von Mangoldt function $\Lambda: \mathcal{H} \to \mathbb{N}$ is defined as the number of contiguous representations of a hike:

$$\Lambda(h) = \# \{ w \text{ walk in } \mathcal{G} \mid w = h \text{ in } \mathcal{M}_{\mathcal{G}} \}$$

$$\Lambda(w_{ed}w_{dc}w_{ce}w_{fg}w_{gf})=0$$

$$\Lambda(w_{cb}w_{bc}w_{ce}w_{ed}w_{dc})=3$$

The walk von Mangoldt function $\Lambda: \mathcal{H} \to \mathbb{N}$ is defined as the number of contiguous representations of a hike:

$$\Lambda(h) = \# \{ w \text{ walk in } \mathcal{G} \mid w = h \text{ in } \mathcal{M}_{\mathcal{G}} \}$$

$$\Lambda(w_{ed}w_{dc}w_{ce}w_{fg}w_{gf})=0$$

$$\Lambda(w_{cb}w_{bc}w_{ce}w_{ed}w_{dc})=3$$

The walk von Mangoldt function $\Lambda: \mathcal{H} \to \mathbb{N}$ is defined as the number of contiguous representations of a hike:

$$\Lambda(h) = \# \{ w \text{ walk in } \mathcal{G} \mid w = h \text{ in } \mathcal{M}_{\mathcal{G}} \}$$

$$\Lambda(w_{ed}w_{dc}w_{ce}w_{fg}w_{gf})=0$$

$$\Lambda(w_{cb}w_{bc}w_{ce}w_{ed}w_{dc})=3$$

On
$$\mathbb{N}$$
, $\Lambda(h) = \begin{cases} \ell(p) & \text{if } h = p^k \text{ with } p \text{ prime} \\ 0 & \text{else.} \end{cases}$

Denote by ζ the series S1.

Proposition ([1])

$$\mathcal{S}\Lambda(s) = -rac{\zeta'(s)}{\zeta(s)}, \ \log \zeta(s) = \sum_{h \in \mathcal{H}} e^{-s\ell(h)} rac{\Lambda(h)}{\ell(h)} h.$$

Denote by ζ the series S1.

Proposition ([1])

$$\mathcal{S}\Lambda(s) = -rac{\zeta'(s)}{\zeta(s)},$$
 $\log \zeta(s) = \sum_{h \in \mathcal{H}} e^{-s\ell(h)} rac{\Lambda(h)}{\ell(h)} h.$

Analogous to number theory, replacing length by logarithm.

Totally additive functions

A function $f \in \mathcal{F}$ is totally additive if $f(hh') = f(h) + f(h'), \forall h, h' \in \mathcal{H}$.

Totally additive functions

A function $f \in \mathcal{F}$ is totally additive if $f(hh') = f(h) + f(h'), \forall h, h' \in \mathcal{H}$.

Proposition ([1])

For f a totally additive function,

$$f * \mu(h) = \begin{cases} f(c) & \text{if } h \text{ walk with } c \text{ its unique prime right-divisor} \\ 0 & \text{else.} \end{cases}$$

Totally additive functions

A function $f \in \mathcal{F}$ is totally additive if $f(hh') = f(h) + f(h'), \forall h, h' \in \mathcal{H}$.

Proposition ([1])

For f a totally additive function,

$$f * \mu(h) = \begin{cases} f(c) & \text{if } h \text{ walk with } c \text{ its unique prime right-divisor} \\ 0 & \text{else.} \end{cases}$$

On \mathbb{N} , we recover the number theoretic version:

$$f * \mu(n) = \begin{cases} f(p) & \text{if } n = p^k \\ 0 & \text{else.} \end{cases}$$

Table of contents

- Trace and hikes monoids
- 2 Hikes properties and number theory
 - Divisibility and incidence algebra
 - Examples
- Two problems
 - Injectivity
 - Surjectivity

$$\mathsf{Map}\; \mathcal{G} \to \mathcal{H}(\mathcal{G}).$$

We say that the digraph ${\mathcal G}$ represents the trace monoid ${\mathcal M}$ if ${\mathcal M}={\mathcal H}({\mathcal G})$

Map
$$\mathcal{G} \to \mathcal{H}(\mathcal{G})$$
.

We say that the digraph ${\mathcal G}$ represents the trace monoid ${\mathcal M}$ if ${\mathcal M}={\mathcal H}({\mathcal G})$

• Injectivity: link between digraphs representing the same trace monoid ?

Map
$$\mathcal{G} \to \mathcal{H}(\mathcal{G})$$
.

We say that the digraph ${\mathcal G}$ represents the trace monoid ${\mathcal M}$ if ${\mathcal M}={\mathcal H}({\mathcal G})$

- Injectivity: link between digraphs representing the same trace monoid?
- Surjectivity: which trace monoid are representables?

Table of contents

- Trace and hikes monoids
- Hikes properties and number theory
 - Divisibility and incidence algebra
 - Examples
- Two problems
 - Injectivity
 - Surjectivity

Some transformations:

• Remove edges outside cycles and isolated vertices.

Some transformations:

- Remove edges outside cycles and isolated vertices.
- Quotient by edges which are sole out/in going.

Some transformations:

- Remove edges outside cycles and isolated vertices.
- Quotient by edges which are sole out/in going.

• If all cycles containing v also contain v', 'jump' v.

Observation: Every vertex in \mathcal{G} correspond to a clique in the dependence graph of $\mathcal{H}(\mathcal{G})$.

Observation: Every vertex in $\mathcal G$ correspond to a clique in the dependence graph of $\mathcal H(\mathcal G)$.

<u>Conjecture:</u> Let $\mathcal G$ be a (multi)digraph. Let $\mathcal C$ be a minimal number of cliques covering $\mathcal H(\mathcal G)$. Then there exists a multidigraph $\mathcal G'$ with $\#\mathcal C$ vertices such that $\mathcal H(\mathcal G)=\mathcal H(\mathcal G')$.

Table of contents

- Trace and hikes monoids
- 2 Hikes properties and number theory
 - Divisibility and incidence algebra
 - Examples
- Two problems
 - Injectivity
 - Surjectivity

First observations

$$\mathcal{H}(\mathcal{G} \sqcup \mathcal{G}') = \mathcal{H}(\mathcal{G}) \sqcup \mathcal{H}(\mathcal{G}') \longrightarrow \text{restrict to connected graphs.}$$

First number of representable connected graphs (up to isomorphism): 1, 1, 2, 5, 15, 58, 265. Not in oeis.

Some patterns

- Let $\mathcal C$ be a minimal set of cliques covering the dependence monoid of $\mathcal M$.
- Let P be the poset on $\{\bigcap_{k\in S} k \mid S\subseteq C\}$ ordered by inclusion.
- Let $f: P \to \mathbb{N}$ be the map defined by $f(K) = \#K \setminus \bigcup_{K' < K} K'$.
- For every pair intersecting pair of cliques $k, k' \in C$, let $m_{kk'}$ and $m_{k'k}$ be formal variables.
- Let $\mathscr S$ be the following system:

$$\forall K \in P, \sum_{\substack{(k_1,\ldots,k_n) \in \mathcal{C}^n \\ \cap k_i = K}} m_{k_1k_2} \cdots m_{k_{l-1}k_l} m_{k_lk_1} = f(K)$$

- Let $\mathcal C$ be a minimal set of cliques covering the dependence monoid of $\mathcal M$.
- Let P be the poset on $\{\bigcap_{k\in S} k \mid S\subseteq C\}$ ordered by inclusion.
- Let $f: P \to \mathbb{N}$ be the map defined by $f(K) = \#K \setminus \bigcup_{K' < K} K'$.
- For every pair intersecting pair of cliques $k, k' \in C$, let $m_{kk'}$ and $m_{k'k}$ be formal variables.
- ullet Let $\mathscr S$ be the following system:

$$\forall K \in P, \sum_{\substack{(k_1,\ldots,k_n) \in \mathcal{C}^n \\ \cap k_i = K}} m_{k_1k_2} \cdots m_{k_{l-1}k_l} m_{k_lk_1} = f(K)$$

- Let $\mathcal C$ be a minimal set of cliques covering the dependence monoid of $\mathcal M$.
- Let P be the poset on $\{\bigcap_{k\in S} k \mid S\subseteq C\}$ ordered by inclusion.
- Let $f: P \to \mathbb{N}$ be the map defined by $f(K) = \#K \setminus \bigcup_{K' < K} K'$.
- For every pair intersecting pair of cliques $k, k' \in C$, let $m_{kk'}$ and $m_{k'k}$ be formal variables.
- Let $\mathscr S$ be the following system:

$$\forall K \in P, \sum_{\substack{(k_1, \dots, k_n) \in \mathcal{C}^n \\ \cap k_i = K}} m_{k_1 k_2} \cdots m_{k_{l-1} k_l} m_{k_l k_1} = f(K)$$

- Let $\mathcal C$ be a minimal set of cliques covering the dependence monoid of $\mathcal M$.
- Let P be the poset on $\{\bigcap_{k\in S} k \mid S\subseteq C\}$ ordered by inclusion.
- Let $f: P \to \mathbb{N}$ be the map defined by $f(K) = \#K \setminus \bigcup_{K' < K} K'$.
- For every pair intersecting pair of cliques $k, k' \in C$, let $m_{kk'}$ and $m_{k'k}$ be formal variables.
- Let $\mathscr S$ be the following system:

$$\forall K \in P, \sum_{\substack{(k_1, \dots, k_n) \in \mathcal{C}^n \\ \cap k_i = K}} m_{k_1 k_2} \cdots m_{k_{l-1} k_l} m_{k_l k_1} = f(K)$$

- Let $\mathcal C$ be a minimal set of cliques covering the dependence monoid of $\mathcal M$.
- Let P be the poset on $\{\bigcap_{k\in S} k \mid S\subseteq C\}$ ordered by inclusion.
- Let $f: P \to \mathbb{N}$ be the map defined by $f(K) = \#K \setminus \bigcup_{K' < K} K'$.
- For every pair intersecting pair of cliques $k, k' \in C$, let $m_{kk'}$ and $m_{k'k}$ be formal variables.
- Let $\mathscr S$ be the following system:

$$\forall K \in P, \sum_{\substack{(k_1,\ldots,k_n) \in \mathcal{C}^n \\ \cap k_i = K}} m_{k_1k_2} \cdots m_{k_{l-1}k_l} m_{k_lk_1} = f(K)$$

- Let $\mathcal C$ be a minimal set of cliques covering the dependence monoid of $\mathcal M$.
- Let P be the poset on $\{\bigcap_{k\in S} k \mid S\subseteq C\}$ ordered by inclusion.
- Let $f: P \to \mathbb{N}$ be the map defined by $f(K) = \#K \setminus \bigcup_{K' < K} K'$.
- For every pair intersecting pair of cliques $k, k' \in C$, let $m_{kk'}$ and $m_{k'k}$ be formal variables.
- Let $\mathscr S$ be the following system:

$$\forall K \in P, \sum_{\substack{(k_1,\ldots,k_n) \in \mathcal{C}^n \\ \cap k_i = K}} m_{k_1 k_2} \cdots m_{k_{l-1} k_l} m_{k_l k_1} = f(K)$$

<u>Conjecture:</u> The system $\mathscr S$ has a solution in $\mathbb N$ if and only if $\mathcal M$ is representable. Furthermore one of the solutions is such that the multidigraph $\mathcal G$ over $\mathcal C$ and where the edge (k,k') appears $m_{kk'}$ times is such that $\mathcal H(\mathcal G)=\mathcal M$

Other trails

• New idea of algorithm by Jean Fromentin.

• Talk with Xiaolin Zeng.

References

- [1] P.-L. Giscard and P. Rochet, Algebraic combinatorics on trace monoids: extending number theory to walks on graphs. *SIAM*, 2017, Vol. 31, No. 2, pp. 1428–1453.
- [2] P. Cartier and D. Foata, Problèmes combinatoires de commutation et réarrangements, Lecture Notes in Math., 85 (1969).
- [3] C. Choffrut and M. Goldwurm, Determinants and Mobius functions in trace monoids, Discrete Math., 194 (1999), pp. 239–247.

Proof:
$$f,g \in \mathcal{F}$$

$$\mathcal{S}f(s)\mathcal{S}g(s) = \sum_{h \in \mathcal{H}} e^{-s\ell(h)}g(h)h\sum_{h \in \mathcal{H}} e^{-s\ell(h)}g(h)h$$

Proof:
$$f,g \in \mathcal{F}$$

$$Sf(s)Sg(s) = \sum_{h \in \mathcal{H}} e^{-s\ell(h)}g(h)h \sum_{h \in \mathcal{H}} e^{-s\ell(h)}g(h)h$$
$$= \sum_{h,h' \in \mathcal{H}} e^{-s\ell(h)}f(h)he^{-s\ell(h')}g(h')h'$$

Proof:
$$f,g\in\mathcal{F}$$

$$Sf(s)Sg(s) = \sum_{h \in \mathcal{H}} e^{-s\ell(h)}g(h)h \sum_{h \in \mathcal{H}} e^{-s\ell(h)}g(h)h$$

$$= \sum_{h,h' \in \mathcal{H}} e^{-s\ell(h)}f(h)he^{-s\ell(h')}g(h')h'$$

$$= \sum_{h,h' \in \mathcal{H}} e^{-s\ell(hh')}f(h)g(h')hh'$$

Proof: $f,g\in\mathcal{F}$

$$Sf(s)Sg(s) = \sum_{h \in \mathcal{H}} e^{-s\ell(h)} g(h) h \sum_{h \in \mathcal{H}} e^{-s\ell(h)} g(h) h$$

$$= \sum_{h,h' \in \mathcal{H}} e^{-s\ell(h)} f(h) h e^{-s\ell(h')} g(h') h'$$

$$= \sum_{h,h' \in \mathcal{H}} e^{-s\ell(hh')} f(h) g(h') h h'$$

$$= \sum_{h \in \mathcal{H}} e^{-s\ell(h)} \left(\sum_{d \mid h} f(d) g\left(\frac{h}{d}\right) \right) h$$

Proof: $f,g \in \mathcal{F}$

$$Sf(s)Sg(s) = \sum_{h \in \mathcal{H}} e^{-s\ell(h)}g(h)h \sum_{h \in \mathcal{H}} e^{-s\ell(h)}g(h)h$$

$$= \sum_{h,h' \in \mathcal{H}} e^{-s\ell(h)}f(h)he^{-s\ell(h')}g(h')h'$$

$$= \sum_{h,h' \in \mathcal{H}} e^{-s\ell(hh')}f(h)g(h')hh'$$

$$= \sum_{h \in \mathcal{H}} e^{-s\ell(h)} \left(\sum_{d|h} f(d)g\left(\frac{h}{d}\right)\right)h$$

$$= \sum_{h \in \mathcal{H}} e^{-s\ell(h)}f * g(h)h$$

Totally multiplicative functions

A function $f \in \mathcal{F}$ is totally additive if $f(hh') = f(h)f(h'), \forall h, h' \in \mathcal{H}$.

Totally multiplicative functions

A function $f \in \mathcal{F}$ is totally additive if $f(hh') = f(h)f(h'), \forall h, h' \in \mathcal{H}$.

Proposition ([1])

The inverse of a totally multiplicative function f for the Dirichlet convolution is given by

$$f^{-1} = \mu f$$
.

In term of series: $\sum_{h \in \mathcal{H}} e^{-s\ell(h)} f(h) h = \frac{1}{\sum_{h \in \mathcal{H}} e^{-s\ell(h)} \mu(h) f(h) h}$, Generalization of MacMahon's master theorem.

Bidirected digraphs

A bidirected digraphs \mathcal{G} is a digraph without loops and such that $(i,j) \in \mathcal{G} \iff (j,i) \in \mathcal{G}$.

Theorem ([1])

The map $\mathcal{G} \to \mathcal{H}(\mathcal{G})$ restricted to bidirected digraphs is injective up to isomorphism except for K_3 and $K_{1.5}$.