Rappels sur les fonctions logarithme népérien, exponentielle, puissance, sinus, cosinus et tangente

Madame Mammez

Avant de parler de fonctions de références, rappelons deux théorèmes importants concernant les limites de fonctions.

Théorème 1. (encadrement de la limite) Soit I un intervalle de \mathbb{R} de la forme I =]a,b[avec $a < b, a \in \mathbb{R} \cup \{-\infty\}$ et $b \in \mathbb{R} \cup \{+\infty\}$. Soient f, g et h trois fonctions définies sur I et à valeurs dans \mathbb{R} . Soit $s \in I \cup \{a,b\}$. Soit $l \in \mathbb{R}$. Alors:

- 1. Si, pour tout $x \in I$, $f(x) \leq g(x)$ et $\lim_{x \to \infty} g(x) = -\infty$ alors $\lim_{x \to \infty} f(x) = -\infty$.
- 2. Si, pour tout $x \in I$, $h(x) \le f(x)$ et $\lim_{x \to s} h(x) = +\infty$ alors $\lim_{x \to s} f(x) = +\infty$.
- 3. Si, pour tout $x \in I$, $h(x) \le f(x) \le g(x)$ et $\lim_{x \to s} h(x) = \lim_{x \to s} g(x) = l$ alors $\lim_{x \to s} f(x) = l$.

Exemple On pose $f(x) = \frac{\sin(x)}{x}$ pour $x \in \mathbb{R}^*$. Calculons $\lim_{x \to +\infty} f(x)$. On sait que pour tout x réel on a $-1 \le \sin(x) \le 1$. Ainsi, pour tout x > 0, on a $-\frac{1}{x} \le \frac{\sin(x)}{x} \le \frac{1}{x}$. Or $\lim_{x \to +\infty} -\frac{1}{x} = \lim_{x \to +\infty} \frac{1}{x} = 0$. Ainsi, par encadrement $\lim_{x \to +\infty} f(x) = 0$.

Théorème 2. (limite et monotonie) Soit I un intervalle de \mathbb{R} de la forme I=]a,b[avec $a < b, \ a \in \mathbb{R} \cup \{-\infty\}$ et $b \in \mathbb{R} \cup \{+\infty\}$. Soient f, g et h trois fonctions définies sur I et à valeurs dans \mathbb{R} . Soient l et l' des éléments de $\mathbb{R} \cup \{-\infty, +\infty\}$. Alors :

- 1. Si f est croissante sur I alors f admet une limite l en a^+ et une limite l' en b^- . De plus, pour tout $x \in I$, on a $l \le f(x) \le l'$.
- 2. Si f est décroissante sur I alors f admet une limite l en a^+ et une limite l' en b^- . De plus, pour tout $x \in I$, on a $l \ge f(x) \ge l'$.

Exemple Voir la démonstration de $\lim_{x \to +\infty} \ln(x) = +\infty$.

1 Fonction logarithme népérien

Définition 3. L'unique fonction f définie sur \mathbb{R}_+^* à valeurs dans \mathbb{R} , dérivable sur \mathbb{R}_+^* telle que

$$\left\{ \begin{array}{lcl} f'(x) & = & \frac{1}{x} \ pour \ tout \ x > 0 \\ f(1) & = & 0 \end{array} \right.$$

est appelée fonction logarithme népérien et est notée ln.

Proposition 4. La fonction logarithme népérien est strictement croissante sur \mathbb{R}_+^*

Démonstration. La fonction ln est dérivable sur \mathbb{R}_+^* est $\ln'(x) = \frac{1}{x}$ pour tout x > 0. Ainsi $\ln'(x) > 0$ pour tout x > 0. La fonction ln est donc strictement croissante sur \mathbb{R}_+^* .

Proposition 5. Soient a et b deux réels strictement positifs, n et p deux entiers naturels non nuls. On a les propriétés suivantes :

- 1. $\ln(ab) = \ln(a) + \ln(b)$
- 2. $\ln(\frac{1}{a}) = -\ln(a)$
- 3. $\ln(\frac{a}{b}) = \ln(a) \ln(b)$
- $4. \ln(a^n) = n \ln(a)$
- 5. $\ln(a^{\frac{1}{n}}) = \frac{\ln(a)}{n}$ où $a^{\frac{1}{n}}$ est la racine n-ième de a.
- 6. $\ln(a^{\frac{p}{n}}) = \frac{p}{n} \ln(a)$

 $D\acute{e}monstration$. Soient a et b deux réels strictement positifs, n et p deux entiers naturels non nuls.

- 1. On définit la fonction f par $f(x) = \ln(xb)$ pour tout x > 0. La fonction f est dérivable sur \mathbb{R}_+^* et on a $f'(x) = \frac{1}{x}$ pour tout x > 0. Ainsi les fonctions f' et \ln' sont égales. Il existe dont un réel r tel que pour tout x > 0 on ait $\ln(xb) = f(x) = \ln(x) + r$. En particulier on a $\ln(b) = f(1) = \ln(1) + r = r$. Ainsi $\ln(ab) = \ln(a) + \ln(b)$.
- 2. $0 = \ln(1) = \ln(a \times \frac{1}{a}) = \ln(a) + \ln(\frac{1}{a})$. Donc $\ln(\frac{1}{a}) = -\ln(a)$.
- 3. $\ln(\frac{a}{h}) = \ln(a \times \frac{1}{h}) = \ln(a) + \ln(\frac{1}{h}) = \ln(a) \ln(b)$.
- 4. Le résultat est vrai si n=1. On suppose qu'il existe un certain rang $n\geq 1$ tel que $\ln(a^n)=n\ln(a)$. On a alors $\ln(a^{n+1})=\ln(a\times a^{n-1})=\ln(a)+\ln(a^n)=\ln(a)+n\ln(a)=(n+1)\ln(a)$. Par récurrence, le résultat est vrai.

- 5. $\ln(a) = \ln((a^{\frac{1}{n}})^n) = n \ln(a^{\frac{1}{n}})$. Donc $\ln(a^{\frac{1}{n}}) = \frac{\ln(a)}{n}$.
- 6. $\ln(a^{\frac{p}{n}}) = \ln((a^{\frac{1}{n}})^p) = p \ln(a^{\frac{1}{n}}) = \frac{p}{n} \ln(a)$.

Proposition 6. On a les propriétés suivantes :

 $\lim_{x \to +\infty} \ln(x) = +\infty, \ \lim_{x \to 0^+} \ln(x) = -\infty, \ \lim_{x \to +\infty} \frac{\ln(x)}{x} = 0, \ \lim_{x \to +\infty} x - \ln(x) = +\infty, \ \lim_{x \to 0^+} x \ln(x) = 0$

Démonstration. 1. La fonction logarithme est strictement croissante sur \mathbb{R}_+^* . Donc, par le théorème de limite et monotonie, la fonction ln admet des limites $l \in \mathbb{R} \cup \{-\infty\}$ en 0^+ et $l' \in \mathbb{R} \cup \{+\infty\}$ en $+\infty$. De plus pour tout $x \in \mathbb{R}_+^*$, on a $l \leq \ln(x) \leq l'$. En particulier, pour tout entier relatif $n \in \mathbb{Z}$, on a $l \leq \ln(2^n) \leq l'$. Or $\ln(2^n) = n \ln(2)$. Ainsi pour tout entier relatif $n \in \mathbb{Z}$, on a $l \leq n \ln(2) \leq l'$. On sait que $\ln(2) > 0$. Donc $\lim_{n \to +\infty} n \ln(2) = +\infty$ et $\lim_{n \to +\infty} n \ln(2) = -\infty$. Donc $l = -\infty$ et $l' = +\infty$, d'où les deux premières limites.

2. On considère la fonction

$$f: \left\{ \begin{array}{ccc} \mathbb{R}_+^* & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \ln(x) - \sqrt{x} \end{array} \right.$$

La fonction f est dérivable sur son ensemble de définition et, pour tout x>0, on a :

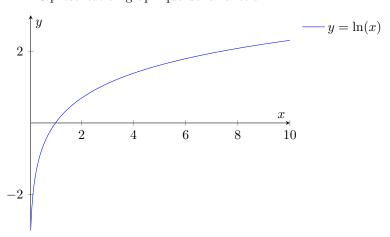
$$f'(x) = \frac{1}{x} - \frac{1}{2\sqrt{x}} = \frac{2 - \sqrt{x}}{2x}.$$

Pour x>0 le signe de f'(x) est donné par celui de $2-\sqrt{x}$ et on obtient que f'(x)<0 ssi x>4. Ainsi, f est strictement décroissante sur $[4,+\infty[$. On a $f(4)=\ln(4)-2=2\ln(2)-2$. Donc f(4)<0. Ainsi, pour tout $x\geq 4$, on $\ln(x)\leq \sqrt(x)$ et donc $\frac{\ln(x)}{x}\leq \frac{1}{\sqrt{x}}$. Pour $x\geq 4$, on a alors $0\leq \frac{\ln(x)}{x}\leq \frac{1}{\sqrt{x}}$. Or $\lim_{x\to +\infty}\frac{1}{\sqrt{x}}=0$. Par encadrement de la limite on a : $\lim_{x\to +\infty}\frac{\ln(x)}{x}=0$

- 3. Soit x>0. On a $x-\ln(x)=x(1-\frac{\ln(x)}{x})$. On a montré que $\lim_{x\to+\infty}\frac{\ln(x)}{x}=0$. Donc $\lim_{x\to+\infty}x-\ln(x)=+\infty$.
- 4. Soit x > 0. On pose $y = \frac{1}{x}$. On a alors $x \ln(x) = \frac{\ln(\frac{1}{y})}{y} = -\frac{\ln(y)}{y}$. Ainsi

$$\lim_{x \to 0^+} x \ln(x) = \lim_{y \to +\infty} -\frac{\ln(y)}{y} = 0.$$

Représentation graphique de la fonction ln.



2 Fonction exponentielle

Définition 7. Soit f l'unique fonction définie sur \mathbb{R} à valeurs dans \mathbb{R}_+^* telle que pour tout $x \in \mathbb{R}$, le réel f(x) soit l'unique réel strictement positif tel que $\ln(f(x)) = x$. Cette fonction est appelée fonction exponentielle et est notée exp.

Notation : Le réel strictement positif $\exp(1)$ est noté e. On a $e \approx 2,718$.

Proposition 8. La fonction exponentielle est strictement croissante sur \mathbb{R} .

Démonstration. Soient x et y deux réels tels que x < y. Montrons que $\exp(x) < \exp(y)$ On sait que $x = \ln(\exp(x))$ et $y = \ln(\exp(y))$. Comme x < y on a $\ln(\exp(x)) < \ln(\exp(y))$. Or la fonction ln est strictement croissante sur \mathbb{R}^*_+ donc $\exp(x) < \exp(y)$. Ainsi la fonction exponentielle est strictement croissante sur \mathbb{R} .

Théorème 9. (Admis) La fonction exponentielle est dérivable sur \mathbb{R} et pour tout réel x on $a \exp'(x) = \exp(x)$.

Notation : Soit $x \in \mathbb{R}$, le réel $\exp(x)$ est simplement noté e^x .

Proposition 10. Soient a et b deux réels, n et p deux entiers naturels non nuls. On a les propriétés suivantes :

- 1. $e^0 = 1$
- 2. $e^{a+b} = e^a e^b$
- 3. $e^{-b} = \frac{1}{e^b}$
- 4. $e^{a-b} = \frac{e^a}{e^b}$
- 5. $(e^a)^n = e^{na}$
- 6. $(e^a)^{-n} = e^{-na}$

 $D\'{e}monstration$. Soient a et b deux réels, n et p deux entiers naturels non nuls.

- 1. On a $\ln(e^0) = 0 = \ln(1)$. Comme la fonction ln est strictement croissante sur \mathbb{R}_+^* on a forcément $e^0 = 1$.
- 2. On a $a+b=\ln(e^{a+b})$ et $a+b=\ln(e^a)+\ln(e^b)=\ln(e^ae^b)$. Ainsi $\ln(e^{a+b})=\ln(e^ae^b)$. Comme la fonction ln est strictement croissante sur \mathbb{R}_+^* on a forcément $e^{a+b}=e^ae^b$.
- 3. On a $1 = e^0 = e^{b-b} = e^{b+(-b)} = e^b e^{-b}$. Donc $e^{-b} = \frac{1}{e^b}$.
- 4. On a $e^{a-b} = e^{a+(-b)} = e^a e^{-b} = \frac{e^a}{e^b}$.
- 5. Le résultat est vrai si n=1. On suppose qu'il existe un certain rang $n\geq 1$ tel que $(e^a)^n=e^{na}$. On a alors $(e^a)^{n+1}=(e^a)^ne^a=e^{na}e^a=e^{(n+1)a}$. Par récurrence, le résultat est vrai.

6. On a $(e^a)^{-n} = \frac{1}{(e^a)^n} = \frac{1}{e^{na}} = e^{-na}$.

Proposition 11. On a les propriétés suivantes :

$$\lim_{x\to +\infty}e^x=+\infty,\ \lim_{x\to -\infty}e^x=0,\ \lim_{x\to +\infty}\frac{e^x}{x}=+\infty,\ \lim_{x\to -\infty}xe^x=0$$

Démonstration. 1. La fonction exponentielle est strictement croissante sur \mathbb{R} . Donc, par le théorème de limite et monotonie, la fonction exp admet des limites $l \in \mathbb{R} \cup \{-\infty\}$ en $-\infty$ et $l' \in \mathbb{R} \cup \{+\infty\}$ en $+\infty$. De plus pour tout $x \in \mathbb{R}$, on a $l \leq e^x \leq l'$. En particulier, pour tout entier relatif $n \in \mathbb{Z}$, on a $l \leq e^n \leq l'$. Or e > 1. Donc $\lim_{n \to +\infty} e^n = +\infty$. Pour tout entier naturel n, on a $e^{-n} = \frac{1}{e^n}$. Ainsi $\lim_{n \to -\infty} e^n = 0$. De plus, pour tout $x \in \mathbb{R}$, on a $e^x > 0$ d'où $l \geq 0$. Ainsi l = 0 et $l' = +\infty$, d'où les deux premières limites.

2. On considère la fonction

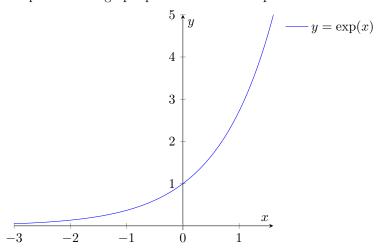
$$f: \left\{ \begin{array}{ccc} \mathbb{R}_+^* & \longrightarrow & \mathbb{R} \\ x & \longmapsto & e^x - x^2 \end{array} \right.$$

L'étude de cette fonction montre qu'elle strictement croissante sur $[1, +\infty[$. De plus f(1) = e-1>0. Ainsi, pour $x\geq 1$, on a $\frac{e^x}{x}\geq x$. Or $\lim_{x\to +\infty}x=+\infty$. Par encadrement de la

 $\lim_{x \to +\infty} \lim_{x \to +\infty} \frac{e^x}{x} = +\infty.$

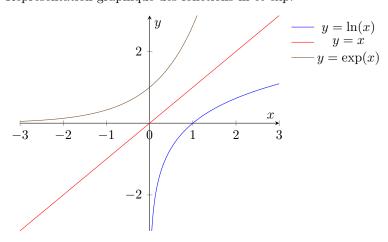
3. Soit x<0. On a $xe^x=\frac{x}{e^{-x}}$. On pose y=-x. On a alors $xe^x=\frac{x}{e^{-x}}=-\frac{y}{e^y}$. De plus, $\lim_{x\to -\infty}xe^x=\lim_{y\to +\infty}-\frac{y}{e^y}.$ On a montré dans le point précédent que $\lim_{x\to +\infty}\frac{e^x}{x}=+\infty.$ Donc $\lim_{y\to +\infty}-\frac{y}{e^y}=0.$ D'où le résultat.

Représentation graphique de la fonction exp.



Le graphe de la fonction exponentielle est le symétrique de celui de la fonction logarithme par rapport à la droite d'équation y=x.

Représentation graphique des fonctions ln et exp.



3 Fonctions puissance

Définition 12. Soit a un réel strictement positif. On définit la fonction suivante :

$$h: \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R}_+^* \\ x & \longmapsto & e^{x \ln(a)} \end{array} \right.$$

Notation : Soit a un réel strictement positif. Pour tout $x \in \mathbb{R}$, le réel strictement positif $e^{x \ln(a)}$ est simplement noté a^x

Exemples

- 1. Soit $x \in \mathbb{R}$. On a $2^x = e^{x \ln(2)}$.
- 2. Soit $x \in \mathbb{R}$. On a $\pi^x = e^{x \ln(\pi)}$.

Proposition 13. Soit a un réel strictement positif. La fonction

$$h: \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R}_+^* \\ x & \longmapsto & e^{x \ln(a)} \end{array} \right.$$

est dérivable sur \mathbb{R} et, pour tout $x \in \mathbb{R}$, on a $h'(x) = \ln(a)h(x)$.

Démonstration. La fonction h est la composée de fonctions dérivables sur \mathbb{R} .

Définition 14. Soit a un réel. On définie la fonction g suivant par :

$$g_a: \left\{ \begin{array}{ccc} \mathbb{R}_+^* & \longrightarrow & \mathbb{R}_+^* \\ x & \longmapsto & e^{a\ln(x)} = x^a \end{array} \right.$$

Cette fonction est appelée fonction puissance.

Exemples

- 1. Si a=0, la fonction g_a est la fonction constante égale à 1.
- 2. Si a = n avec $n \in \mathbb{N}^*$, alors pour tout $x \in \mathbb{R}^*_+$, on a $g_a(x) = g_n(x) = \underbrace{x \times \cdots \times x}_{n \text{ fois}}$.
- 3. Si a = -n avec $n \in \mathbb{N}^*$, alors pour tout $x \in \mathbb{R}_+^*$, on a $g_a(x) = g_{-n}(x) = \underbrace{\frac{1}{x \times \cdots \times x}}_{n \text{ fois}} = \underbrace{\left(\frac{1}{x}\right)^n}_{n \text{ fois}}$.
- 4. Si $a = \frac{1}{n}$ avec $n \in \mathbb{N}^*$, alors pour tout $x \in \mathbb{R}_+^*$, on a $g_a(x) = g_{\frac{1}{n}}(x)$ est la racine n-ième de x.
- 5. Soient u une fonction définie sur un sous-ensemble D de \mathbb{R} à valeurs dans \mathbb{R}_+^* et v une fonction définie D à valeurs dans \mathbb{R} . Pour tout $x \in D$ on a : $u(x)^{v(x)} = e^{v(x)\ln(u(x))}$.

Proposition 15. Soit a un réel. La fonction

$$g_a: \left\{ \begin{array}{ccc} \mathbb{R}_+^* & \longrightarrow & \mathbb{R}_+^* \\ x & \longmapsto & e^{a\ln(x)} = x^a \end{array} \right.$$

est dérivable sur \mathbb{R}_+^* et, pour tout $x \in \mathbb{R}_+^*$, on a :

$$g'(x) = \frac{a}{r} e^{a \ln(x)} = \frac{a}{e^{\ln(x)}} e^{a \ln(x)} = a e^{a \ln(x)} e^{-\ln(x)} = a e^{(a-1) \ln(x)} = a x^{a-1}.$$

Proposition 16. Soient a et b deux réels tels que a > 0 et b > 1. On a:

$$\lim_{x \to +\infty} \frac{b^x}{r^a} = +\infty \ et \lim_{x \to +\infty} \frac{\ln(x)}{r^a} = 0$$

Exercice: Calculer $\lim_{x \to +\infty} x^{\frac{1}{x}}$. Soit x > 0. On a $x^{\frac{1}{x}} = e^{\frac{\ln(x)}{x}}$. Or $\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$ et $\lim_{x \to 0} e^x = 1$. Ainsi, $\lim_{x \to +\infty} x^{\frac{1}{x}} = 1$.

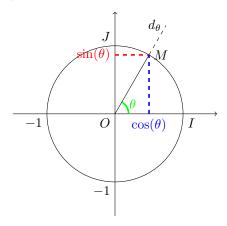
4 Fonctions cosinus, sinus et tangente

Définition 17. Soit $D \subset \mathbb{R}$ tel que pour tout $x \in D$ on ait aussi $-x \in D$. Soit f une fonction définie sur D à valeurs dans \mathbb{R} .

- 1. On dit que f est paire si, pour tout $x \in D$, on a f(-x) = f(x). (Dans ce cas le graphe de f est symétrique par rapport à l'axe des ordonnées.)
- 2. On dit que f est impaire si, pour tout $x \in D$, on a f(-x) = -f(x). (Dans ce cas le graphe de f est symétrique par rapport à l'origine.)

Définition 18. Soient $T \in \mathbb{R}_+^*$ et $D \subset \mathbb{R}$ tel que pour tout $x \in D$ et tout $k \in \mathbb{Z}$, on ait aussi $x + kT \in D$. Soit f une fonction définie sur D à valeurs dans \mathbb{R} . On dit que f est T-périodique si, pour tout $x \in D$ et tout $k \in \mathbb{Z}$, on a f(x + kT) = f(x).

Définition 19. On munit le plan d'un repère orthonormé $(O, \overrightarrow{OI}, \overrightarrow{OJ})$. Soit $\theta \in [0, 2\pi[$. Soit d_{θ} la demi-droite d'origine O telle pour tout point P de d_{θ} différent de l'origine on ait $\widehat{IOP} = \theta$ rad. On appelle C le cercle de centre O est de rayon 1. Soit M le point d'intersection entre C et d_{θ} . Notons (x_M, y_M) les cordonnées du point M. On pose $\cos(\theta) = x_M$ et $\sin(\theta) = y_M$.



Définition 20. 1. Soit f la fonction définie sur \mathbb{R} à valeurs dans [-1,1], paire, 2π périodique telle que, pour tout $\theta \in [0, 2\pi[$, on ait $f(\theta) = \cos(\theta)$. La fonction f est appelée fonction cosinus est et notée \cos .

2. Soit g la fonction définie sur \mathbb{R} à valeurs dans [-1,1], impaire, 2π -périodique telle que, pour tout $\theta \in [0, 2\pi[$, on ait $g(\theta) = \sin(\theta)$. La fonction g est appelée fonction sinus est et notée sin.

Proposition 21. (Admis) Les fonctions cosinus et sinus sont dérivables sur \mathbb{R} et pour tout $x \in \mathbb{R}$ on $a \sin'(x) = \cos(x)$ et $\cos'(x) = -\sin(x)$.

Proposition 22. (Admis) Soit $x \in \mathbb{R}$. On a :

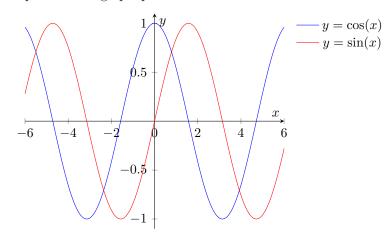
- 1. $\cos^2(x) + \sin^2(x) = 1$.
- 2. $\cos(x + \pi) = -\cos(x)$.
- 3. $\cos(\pi x) = -\cos(x)$.
- 4. $\cos(\frac{\pi}{2} x) = \sin(x)$.
- 5. $\sin(x + \pi) = -\sin(x)$.
- $6. \sin(\pi x) = \sin(x).$

7.
$$\sin(\frac{\pi}{2} - x) = \cos(x)$$
.

On rappelle que, par définition, pour tout réel x et tout entier relatif k, on a :

- $1. \cos(-x) = \cos(x).$
- $2. \cos(x + 2k\pi) = \cos(x).$
- $3. \sin(-x) = -\sin(x).$
- $4. \sin(x + 2k\pi) = \sin(x).$

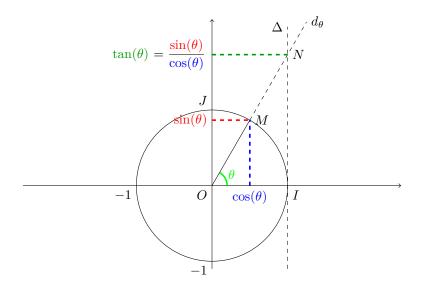
Représentation graphique des fonctions sin et cos.



Définition 23. On appelle fonction tangente et note tan la fonction définie de la façon suivante :

$$\tan: \left\{ \begin{array}{ccc} \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \frac{\sin(x)}{\cos(x)} \end{array} \right.$$

Proposition 24. (Interprétation graphique) On munit le plan d'un repère orthonormé $(O, \overrightarrow{OI}, \overrightarrow{OJ})$. Soit $\theta \in [0, 2\pi[$. Soit d_{θ} la demi-droite d'origine O telle pour tout point P de d_{θ} différent de l'origine on ait $\widehat{IOP} = \theta \operatorname{rad}$. On appelle C le cercle de centre O est de rayon 1. Soit M le point d'intersection entre C et d_{θ} . On note Δ la droite d'équation x = 1. Soit N le point d'intersection entre Δ et d_{θ} . On note (x_N, y_N) les coordonnées de N. On a $x_N = 1$ et $\tan(\theta) = y_N$.



Proposition 25. 1. La fonction tangente est impaire.

- 2. La fonction tangente est π -périodique.
- 3. La fonction tangente est dérivable sur $D = \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}$ et, pour tout $x \in D$, on $a : \tan'(x) = 1 + \tan^2(x) = \frac{1}{\cos^2(x)}$.

Démonstration. On pose $D = \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}.$

- 1. Soit $x \in D$. On a : $\tan(-x) = \frac{\sin(-x)}{\cos(-x)} = -\frac{\sin(x)}{\cos(x)} = -\tan(x)$.
- 2. Soient $x \in D$ et $k \in \mathbb{Z}$. Alors, d'après les propriétés du sinus et du cosinus :
 - (a) si k est pair alors $\sin(x + k\pi) = \sin(x)$ et $\cos(x + k\pi) = \cos(x)$.
 - (b) si k est impair alors $\sin(x + k\pi) = -\sin(x)$ et $\cos(x + k\pi) = -\cos(x)$.

Ainsi : $\tan(x + k\pi) = \frac{\sin(x+k\pi)}{\cos(x+k\pi)} = \frac{\sin(x)}{\cos(x)} = \tan(x)$.

3. La fonction tangente est le quotient de deux fonctions dérivables sur D dont le dénominateur ne s'annule pas sur D. Soit $x \in D$. On a

$$\tan'(x) = \frac{\sin'(x)\cos(x) - \sin(x)\cos'(x)}{\cos^2(x)} = \frac{\cos^2(x) + \sin^2(x)}{\cos^2(x)} = \frac{1}{\cos^2(x)} = 1 + \tan^2(x).$$

Proposition 26. On $a \lim_{x \to -\frac{\pi}{2}^+} \tan(x) = -\infty$ et $\lim_{x \to \frac{\pi}{2}^-} \tan(x) = +\infty$.

 $D\acute{e}monstration. \text{ On sait que } \tan(x) = \frac{\sin(x)}{\cos(x)}, \lim_{x \to -\frac{\pi}{2}^+} \sin(x) = -1 \lim_{x \to -\frac{\pi}{2}^+} \cos(x) = 0^+, \lim_{x \to \frac{\pi}{2}^-} \sin(x) = 1 \text{ et } \lim_{x \to \frac{\pi}{2}^-} \cos(x) = 0^+.$

Représentation graphique de la fonction tan.

