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Abstract. In this article, we study the Hopf algebra Hp of dissection diagrams introduced
by Dupont in his thesis, more precisely we focus on its underlying coalgebra. We use the version
with a parameter x in the base field. We conjecture it is cofree if x = 1 or z is not a root of
unity. If x = —1 then we know there is no cofreeness. Since Hp is a free commutative right-sided
combinatorial Hopf algebra as defined by Loday and Ronco, then there exists a pre-Lie structure
on the primitives of its graded dual. Furthermore ’H% and the enveloping algebra of its prim-
itive elements are isomorphic. Thus, we can equip 7—[% with a structure of Oudom-Guin. We
focus on the pre-Lie structure on dissection diagrams and in particular on the pre-Lie algebra
generated by the dissection diagram of degree 1. We prove that it is not free. We express a
Hopf algebra morphism between the Grossman-Larson Hopf algebra and H{ by using pre-Lie
and Oudom-Guin structures.

Keywords. Combinatorial Hopf algebras, dissection diagrams, cofreeness, rooted trees, pre-
Lie algebras, enveloping algebras, morphism, insertion process.

Résumé. Dans cet article, nous nous intéressons a ’algebre de Hopf a parametre Hp des
diagrammes de dissection introduite par Dupont dans sa thése de doctorat. Nous cherchons
plus particulierement a étudier sa cogebre sous-jacente. Nous conjecturons qu’elle est colibre
si x = 1 ou = n’est pas une racine de I'unité. Il n’y a pas de coliberté lorsque le parameétre
vaut —1. L’algebre de Hopf Hp est un exemple d’algebre de Hopf combinatoire commutative-
associative-libre droite selon Loday et Ronco. Ceci implique 'existence d’une structure pré-Lie
sur les primitifs de son dual gradué dont on sait qu’il est isomorphe a 'algebre enveloppante
de ses primitifs. Il est alors possible de munir 7—[% d’une structure de Oudom-Guin. Nous nous
intéressons a la structure pré-Lie des diagrammes de dissection et plus particulierement a la
sous-algebre pré-Lie non triviale engendrée par le diagramme de dissection de degré 1. Nous
montrons que cette derniére n’est pas libre. Nous explicitons un morphisme d’algebres de Hopf
entre celle de Grossman-Larson et H% grace aux structures pré-Lie et aux structures de Oudom-
Guin.

Mots-clés. Algebres de Hopf combinatoires, diagrammes de dissection, arbres enracinés,
algebres pré-Lie, algébres enveloppantes, morphisme, procédé d’insertion.
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Introduction

The Hopf algebra of dissection diagrams comes from number theory and was introduced by
Dupont [8] [9, chapter 2]. He considers the coproduct calculation problem in the fundamental
Hopf algebra of the category of mixed Hodge-Tate structures. Thanks to dissection diagrams,
he aims at computing this coproduct for motivic dissection polylogarithms.

A dissection diagram of degree n is a (n + 1)-gon with a set of n non-intersecting chords
forming a planar rooted tree. Dupont builds a coalgebra structure on the symmetric algebra of
dissection diagrams which makes it into a Hopf algebra denoted by Hp. The coproduct is given
with a parameter x selection-quotient process [9, sections 2.1.2 and 2.1.3]. Dupont considers
the case x = —1, defines a decorated version and explains compatibilities between decorations
and chords contraction in an oriented graph [9, section 2.1.4]. The set of decorations must be a
group and in this case, Dupont uses the complex numbers group. For any dissection diagram D
he defines dissection polylogarithms I(D) as an absolutely convergent integral of a differential
form on a simplex [9) definition 2.3.5]. The differential form depends on decorated chords and
the simplex on decorated sides of D [9] section 2.3.2]. He gives then a motivic version (D)
[9, section 2.4.1] and computes the coproduct [9, section 2.4.2, theorem 2.4.9].

In this article, we aim at understanding the combinatorics of the Hopf algebra of dissection
diagrams. We first recall the Hopf algebra construction as well as two particular families of
dissection diagrams that generate Hopf subalgebras : the path trees and the corollas. We
express their Hopf algebraic structures as group coordinate algebras. The path trees subalgebra
and the Hopf algebra of symmetric functions are isomorphic. The corollas subalgebra is the
dissection diagrams version of the Faa di Bruno Hopf algebra. We then discuss cofreeness. In
the case of degree three, we give a basis of the vector space of primitive elements although their
dimensions do not permit to reach a conclusion. Computations attest that the Hopf algebra Hp
is not cofree with the parameter x = —1. We conclude this first section with calculations of the
antipode.

The second part consists in studying Hp by using Hopf algebras of rooted trees. Sending a
dissection diagram to its underlying rooted tree is not a good choice, because it does not respect
the coalgebra structure. Dupont [9, remark 2.1.15] alludes to a pre-Lie structure on dissection



diagrams. The Hopf algebra 7—[% is graded, connected, cocommutative, so is isomorphic to the
enveloping algebra U(gp) of its primitive elements gp. According to Loday and Ronco, Hp
is a free-commutative right-sided combinatorial Hopf algebra. This implies that there exists
a pre-Lie structure on gp. In that way, we can use the Oudom-Guin structural theorem [23]
proposition 2.7 - theorem 2.12] about enveloping algebras of pre-Lie algebras. The goal is then
to study the parametrized pre-Lie algebra of dissection diagrams. Indeed, let z be a parameter
in the base field. If the pre-Lie algebra of dissection diagrams associated to z is free then its
enveloping algebra is free too and, by duality, the dissection Hopf algebra of dissection diagrams
‘Hp associated to x is cofree. After a brief recall about pre-Lie algebras and the Grossman-Larson
Hopf algebra, we present the Hopf algebra ’H% and the pre-Lie structure on gp. We describe the
unique morphism of Hopf algebras ¢ respecting the Oudom-Guin structures of Hgr, and Hj) and

sending the rooted tree t = . of degree 1 to D = . This morphism relies on an insertion

process of chords (propositions 39, [44] and . We prove that the pre-Lie algebra generated

by is not free (corollary [34]) and is a strict pre-Lie subalgebra of gp (proposition [29)).

Consequently the pre-Lie algebra of dissection diagrams is not free and it does not answer the
question of cofreeness. We conjecture the kernel of ¢ to be the Hopf biideal generated by rooted
trees with at least one vertex of valency at least three (conjecture . Propositions and
[49] are first steps towards a solution to this conjecture.

This article is a shortened version of chapter 3 of my thesis [21], chapitre 3].

1 Hopf algebra of dissection diagrams

1.1 Reminders

We recall some notations and the construction of the Hopf algebra of dissection diagrams. Let
K be a commutative base field of characteristic 0. For any non-negative integer n, we consider
a regular oriented (n + 1)-gon II,, with a special vertex called the root. We draw II,, as a circle
and put the root at the bottom. An arc between two vertices is a side, while a line between two
distinct vertices is a chord.

Definition 1. A dissection diagram of degree n is a set of n non-intersecting chords of 11,
such that the graph formed by the chords is acyclic. So the n chords form a planar rooted tree
whose root is the root of I1,,. For any dissection diagram D, we denote by € (D) the set of its
chords.

Example. We consider the dissection diagram

oo O\
W,

Its sides are colored in blue and its chords are colored in red.

Lemma 2. The number of dissection diagrams of degree n € N is given by

1 3n
d, =
2n+1<n>

and satisfies the following recursive relation

Vn>1,dy= Y didids,
11,42,i3>0
i1+i2+iz=n—1
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Proof. Let us recall ideas expounded by Dupont [9, lemme 2.1.1] in his proof. For any dissection
diagram D, there exists a unique triple of dissection diagrams (D1, Dy, D3) and a unique triple
of integers (i1, 12, 73) such that i; +i2+i3 = n—1 and for any j € {1, 2,3} the dissection diagram
Dj is of degree i; and D is the dissection diagram

oy &
(b3

O

The black vertex is the first vertex, in the clockwise orientation, connected with the root. So, if

d(h) = Y d,h™, then
n>0

d(h) = 1+ hd(h)®.

By the Lagrange inversion formula, for any integer n € N, d,, is then given by

1 1 3n
dn — {1 h 3n hnfl —
n<( R, ) 2n +1 ( n ) ’
where ((1 + h)3", h"~1) is the coefficient of h"~! in (1 + h)3". O

The decomposition of dissection diagrams presented in the proof of lemma [2] will be usefull
to prove proposition 1] and proposition [4§]

Now we denote by D the vector space spanned by dissection diagrams. The formal series d
([25, sequence A001764 ]) recalled in the preceding proof is the Poincaré-Hilbert series of D.

Since a dissection diagram D is clockwise oriented, it is possible to label the sides of II,,.
Furthermore, since the chords of D form a planar rooted tree, it is possible to orient them toward
the root and to label them. If it is necessary, we label the root by 0.

Example.

.
1 2
/2/ \v

D= ¥, 3 -
\
N,
It is thus possible to do the following identification
€ (D) ~{1,...,n} ~ . where " = {sides of II,,} \ {side 0}.

Since this identification is natural, quite often we do not write any label to lighten the
notation.

Let D be a dissection diagram and C be a subset of ¢’ (D). We assume that the cardinality
of C'is p. Chords in C give a partition of Ilegp) in p + 1 faces. For any face o, Sc(a) is the
set of sides of Ijeg(p) Which are in the face o. We shall consider the set .7¢ (D) = Ua-Z ()
where .77 (o) = S () \ {min(Se(a))}-

Definition 3. Consider Hp, which is, as vector space, the symmetric algebra generated by
D (i.e. as vector space Hp = S(D)), and define the two maps m and A by:

) Ho®Hp — Hp
) Di® Dy — Di1Ds

and
Hp — Hp X@Hp
A D — > ka(D)qc(D) ®rc(D)
Cccé(D)
where



1. x € K is scalar,
2. qo(D) is the disjoint union obtained by contracting chords in C,

3. rc(D) is the dissection diagram obtained by keeping chords in C and contracting sides of
Hgeg(py which are in the set S (D),

4. ko (D) is the number of changes of direction we need to properly orient chords of rc(D).
Dupont proves in [9 proposition 2.1.11] the following proposition.

Proposition 4. 1. The map A is a coassociative coproduct.

2. The quintuple (Hp, m, 1y, A, €), where 1y, is the unit of Hp and € its counit, is a Hopf

algebra.

Example. For example we have the following coproduct:
2
(D) Dot Q O DD D
+<D ® (@ +(1+:c)@> +1®®.

1.2 Path trees and corollas: two Hopf subalgebras of Hp

Dupont [9, examples 2.1.14] emphasises two special families: the path trees and the corollas. In
fact, they form two Hopf subalgebras which are isomorphic to group coordinate Hopf algebras.
We recall these families and explain the isomorphisms.

1.2.1 Path trees and symmetric functions

Let n be a positive integer. The path tree of degree n is the dissection diagram Y;, of degree n
such that for any ¢ € [1,n — 1], chord i goes from vertex i to vertex ¢ + 1 and chord n connects
vertex n to the root. The path tree of degree 0 is the empty dissection diagram i.e. Yy = 1.

Examples. Path trees of degree 1 to 4:

1 2 2 3
1 2
le 5 }/2: s }/3:1 3 }/21: .
1 4

For any non-negative integer n we have

AT =Y (Z) Y ® Y g

k=0

Trivially, the vector space generated by disjoint unions of path trees is a Hopf subalgebra of
‘Hp here denoted by &. Dupont [, examples 2.1.14, 1] remarks that the & coproduct is
reminiscent of the one on symmetric functions. We give an isomorphism between both.

D

Let Go = (1+ > ¢,h™ € K[[R]]) be the multiplicative group of formal series with constant
n=1

term equal to 1. For any positive integer n we call n-th coordinate map the map ,, defined by



K[ — K

oo

Q=1+ @h" — .
n=1

with its usual product and the coproduct given by: for any map f € Sym, for any elements P

and Q of Go, Ag,(f)(P ® Q) = f(PQ).

Proposition 5. The Hopf algebras Ey and Sym are isomorphic.

PO We consider the Hopf algebra Sym = K[%,...,%,,...]

Proof. 1t is sufficient to consider the following Hopf algebra morphism

o Sym — &y
Ml — v

O]

Remark. Actually, the morphism defined in the proof above comes from the one used by
DOUBILET, ROTA and STANLEY to prove that the reduced incidence algebra of the poset of path
trees and the algebra of exponential power series [7, Example 4.6].

1.2.2 Corollas and the Faa di Bruno Hopf algebra

The second special family emphasized by Dupont is that of the corollas. For any positive integer
n, the corolla of degree n is the dissection diagram such that for any ¢ € [1,n] the chord ¢ goes
from vertex ¢ to the root. The corolla of degree 0 is the empty dissection diagram i.e. Xy = 1.

Examples. Non-empty corollas of degree n less than or equal to 4:

1 2 2 3
1 2
Xlz 5 X2: 5 X3:1 3 X4: .
1 4

For any non-negative integer n, we have:

n

AXp) =) < > XZ-O...X%) ® Xp.

k=0 i0+---+ik:n7k
1,20

Trivially, the vector space spanned by disjoint union of corollas is a Hopf subalgebra of Hp that

we denote by Cx.
Let us now recall the Faa di Bruno Hopf algebra construction. Let us consider the set

[e.e]
Gy = (h+ Z gnh"! € K][[h]]). Endowed with the natural formal series composition o, it is

n=1
the group of formal diffeomorphisms tangent to identity. For any positive integer n we still call
K[[r]] — K
-th i he li ¥, defi DI —
n-th coordinate map the linear map ¥, defined by >, O=h+ Z qnhn+1 g We

n=1

consider the Hopf algebra Hpsp = K[X1,...,%,,...] with its usual product and the coproduct
given asd follow: for any map f € Hpyp and elements P and Q of G1, Ag, (f)(P®Q) = f(QoP).
It is the Faa di Bruno Hopf algebra.

Proposition 6. The Hopf algebras Cx and Hpqp are isomorphic.

Proof. 1t is sufficient to consider the morphism

s Hrap — Cx
2 S, — X,



1.3 Primitive elements of degree less than or equal to 3

We want to study the underlying coalgebra of Hp to determine whether it is cofree or not. We
start by giving for any parameter € K a basis of the vector space Prim(#p), (respectively
Prim(Hp);) spanned by degree 2 (respectively degree 3) primitive elements. Unfortunately,
these two cases are not sufficient to decide whether Hp is cofree or not.
o0
1
Let Fy,, be the Poincaré-Hilbert formal series of Hp. By definition, Fyy, (h) = H W,
n=1 o "
where d,, is the number of dissection diagrams of degree n for any non-negative integer. If Hp

— i.e.
Fyy,

is cofree, we have Fpyim,) = 1

Fpiim(ap) (h) = h 4 3h* + 9% + 40h* + 185h° + ... (1)

A basis of Prim(Hp), is given by the following triple (V1,V2,V3) of independent vectors

V1:(1+x)w—2w,
%:@—@,
- OO

Definition 7. We define the map k by

[ HpeoHy — HpoHp
’ U1@U; — Us®@Us

The morphism ko A is denoted by A°P.
For the third degree case, we add the following notations.
Definition 8. Let U be in Hp.

1. We denote by I(U) its projection over D, by q(U) its projection over (DV)2, by t(U) its
projection over (D)3 and by r(U) the sum U — [(U) — q(U) — t(U).

We call linear part of A(U) the projection of A(U) over DT @ Dt denoted by 6(U).
The opposite linear part of A(U) is the linear part of A°P(U) denoted by §°P(U).

We call quadratic part of A(U) the projection of A(U) over (D)2@D* denoted by Q(U).

S

The opposite quadratic part of A(U) is the quadratic part of A°P(U) denoted by Q°P(U).

Lemma 9. Let p be a primitive element of degree 3. It can be written asp = l(p)+q(p)+t(p)
and we have:

m o d(l(p)) = — 2q(p),

1 1 1

t(p) :k@ @ @ where k € K,

mo Q(t(p)) = — 3t(p).



Proof. Let p be a primitive element of degree 3. By commutativity, we have m o 6(I(p)) =
—2¢(p). By definition of ¢(p) and since p is of degree 3, there exists a scalar k € K such

that t(p) = k‘@ @ @ Similarly, there exists scalars k1, k2 and k3 in K such that
G D+ P D (D=

= Q%(q(p)). This finally gives Q(I( -

Lemma 10. Let p be a primitive element of degree 3. The part I(p) is a linear combination
of the independent vectors Uy, ..., Uy where

v, :@_:g@m@, v, :©_ﬁ@+x@,
Dl e
oD e

Ur :@_@, Ui :@, U9:®.

Proposition 11. A basis of Prim(Hp)5 is given by the vector family {Vi,...,Vy} where

Vlz©—x@+x®—(1+x)@@—<1+x2)@@
SO DDOD
w@ﬁ@tx@(lmﬁ@@m@n@@
QOO0

OO OD-e2QODDOD
DS OD QD OT
DD
oD D OD 0
—<1+x>@@,

%z@—@,




- OD- VOO
<ml>@®@,

000 9D-DOD
“~( QO OOD

The bases given before are compatible with formula . We use the computation program
in [21, Appendix B.3 | to determine the dimension of prlmltlves elements of low degree for some
parametrized Hopf algebras Hp. With those computations it is possible to explain that Hp is
not cofree if x = —1. Indeed, in degree 5, if x = —1, the primitive space dimension equals 187
which is different from 185 the dimension compatible with cofreeness. If z € [—10%,10%] the
dimensions of the primitive spaces of degree d € [1, 4] are compatible with cofreeness. In degree
5, because of a long computation time, we only calculated the dimension of the vector space for
x € [—100,100]. Except for z = —1, all dimensions turn to be equal to 185.

Conjecture 12. If x =1 or x is not a root of unity, the Hopf algebra Hp is cofree.

1.4 The antipode calculation

We want to give a formula for the antipode. We first have to understand iterated coproducts
i.e. morphisms A* = (A®Id®...®Id)o---o (A ®Id)o A where k is a positive integer. Let
ﬁ—/

k—1 times

D be a dissection diagram and let C' be a subset of ¢’ (D). By contracting C, we change labels
in go(D) and ra(D). As we build iterated coproducts by applying the coproduct on the left, we
need to modify the labels of the chords of g (D). It is sufficient to label the chords of ¢o (D)
with the labels they had in D before the contraction. In the sequel we keep the same notation
for qo(D) and for the element go (D) with modified labels.

Proposition 13. Let n be a positive integer and D be a dissection diagram of degree n. The
value of the antipode S evaluated at D is given by:

S(D)=>_(-1)° Z D)Hrc (a7 . (

where
IIp(s) is the set of s-tuples (C1,...,Cs) of non-empty sets which are a partition of € (D),
Py =0 for any P in Ip(s),

i
P, = U C, for any P inIlp(s) and each integer i in [1, s],

u=1

kp(D) = ko (qpy (D)) + -+ + ke, (gp, 1 (D).

If, for any non-negative integer p, we denote by X, (respectively by Y,) the corolla (respec-
tively the path tree) of degree n, we have in particular:

n k—1
k
= Z(_l) Z Z Xoy H Xijo o Xij,py
k=1 (@1sema)En g0t tijp; =0 J=1
Pj=Qjt1ttog
je{l,.. k—1}
vm, ty,m >0



SV =S (-nF % #Yal Y.,

|
1 a=(a1,ax)=n ajp....0L:

Proof. Let n be a positive integer and D be a dissection diagram of degree n. For any integer s
in [1,n — 1] we define

p(s) = {(Cy,...,Css1) € €(D)*T, (C1,...,C) €p(s) or (C1,...,Cs11) € p(s+1)}.

We use the fact that the antipode reverses the identity map for the convolution product and on
each step we use the renumbering process described earlier. Using a reasoning by induction this
gives:

SD)=- Y 2"P)S(gc,(D))re,(p)
C1C%(D)
C1#£0

= Y ra® N prela D000, (D))re, (ac, (D))rey p)
C1C¥(D) C2C%(D)\Ch
C1#0 Co#D

=(-0* > 2*PS(gp,py) [T reilarn (D))
PEﬁD(u) i=1

- 2":(71)5 S ake®) f[ rc;(qp,_, (D).
s=1 i=1

PEHD(S)

Examples.

) DY DO D
2 DOD
DD DDD

Remark. Considering the Faa di Bruno Hopf algebra as the Hopf algebra of coordinates
of the group of formal diffeomorphims G1, for any positive integer n, the antipode .S computes
in the coordinate map 3, is given by:

VP € G1, S(,)(P) = S, (P

where P~ is the inverse of P for the formal series composition [I3, section 4.3].

2 Dissection diagrams, rooted trees, theorem of Oudom-Guin

The aim of this section is to connect dissection diagrams and rooted trees. For instance, we grade
rooted trees by the number of edges and associates to a disjoint union of dissection diagrams the
disjoint union of underlying planar rooted trees. Unfortunately, this procedure does not respect
the coalgebra structure.

Dupont alludes to a pre-Lie structure over the primitive elements gp of ’H% [9, remark
2.1.15]. We therefore consider ’H% the enveloping algebra of the pre-Lie algebra gp and apply

10



the structural theorem of Oudom-Guin [23], proposition 2.7 - theorem 2.12]. This allows us to
build the unique pre-Lie morphism ~ from the free pre-Lie algebra g7, generated by ¢t = . to gp
sending ¢ to the dissection diagram of degree 1. From this we deduce that the pre-Lie algebra
generated by the dissection diagram of degree 1 is not free and does not generate the whole
pre-Lie algebra gp. We extend v to a morphism of Hopf algebras and give a conjecture about
its kernel.

2.1 Pre-Lie algebras and theorem of Oudom-Guin

Pre-Lie algebras (also called Vinberg algebras) were introduced in 1963 by Vinberg [27] in the
theory of homogeneous convex cones and by Gerstenhaber [14] section 2] in deformation theory.
The PreLie operad defining pre-Lie algebras was introduced and described by Chapoton and
Livernet [5, theorem 1.9]. They also describe the free pre-Lie algebra generated by one or
several generators in terms of rooted trees [5), corollaire 1.10]. It is another way to prove the
isomorphism between the dual of the Connes and Kreimer Hopf algebra [6] and the Grossman-
Larson Hopf algebra [I5]. Foissy proves that the free pre-Lie algebra with one generator is
free as a Lie algebra [I1, theorem 8.4]. Using operad theory, Chapoton extended this result
for any free pre-Lie algebra [4, corollary 5.3]. He proves that the operad PreLie is anticyclic
[3]. Livernet [19, theorem 3.4] determines the freedom of “Hopf pre-Lie algebras” equipped the
relation A(z>y) = A@)py+20y =Wy 2® +20 @ 2@ sy 4+ 2®y. Oudom and
Guin [23, proposition 2.7 - theorem 2.12] build for any pre-Lie algebra g a Hopf algebra which
is isomorphic to U(g). It is a generalization of the construction of the enveloping algebra of
the free pre-Lie algebra of rooted trees generated by ¢ = . (Grossman-Larson Hopf algebra).
Loday and Ronco [20), theorems 5.3 and 5.8] explain that there exists a pre-Lie structure for
free-commutative right-sided combinatorial Hopf algebras. It is possible to equip an operad
with a pre-Lie structure. Burgunder, Delcroix-Oger and Manchon [2, theorem 3.1] attest that
an operad cannot be free as a pre-Lie algebra.

New structures can be defined too. Mansuy builds the quadratic operad Com — PreLie and
gives as an example the algebra of rooted trees equipped with the grafting product and the
grafting product on the root [22] section 4.2]. Foissy [12], definition 17 and theorem 20] describes
the free Com-PrelLie algebra with one generator as the partitioned trees algebra equipped with
the disjoint union product and with the grafting product. Another structure of interest is
the quadratic operad PostLie introduced by Vallette [26] section A.2]. A post-Lie algebra A is
equipped with a binary map > and with a Lie bracket {—, —} which are compatible. If (A, {—, —})
is abelian then (A, >) is a pre-Lie algebra. The post-Lie algebra notion is a generalization of the
pre-Lie algebra notion. A general survey about the origins and applications of pre-Lie algebras
can be found in [I].

Definition 14. A left pre-Lie algebra is a couple (g,>) where g is a vector space and 1> :
g®g— g is an internal product with the following relation: for any x,y,z € g,

x> (ypz)—(zpy)pz=y>(z>z)— (y>z)> 2.

Example. We consider the classical example of g = {P(X)0, P(X) € K[X]}, the deriva-
tion algebra of K[X], where 0 is the derivation sending X to 1. We define the product > by

>:{ g0y — g
P(X)02 QX)) — (P(X)IQ(X))d.

The product of two derivations P(X)0 and Q(X)0 is not the usual composition of maps (g
is not stable under this product) but is the unique derivation sending X to P(X)Q'(X). Let
P(X), Q(X) and R(X) be polynomials. We have

P(X)d1 (Q(X)d> R(X)d) — (P(X)d> Q(X)d) > R(X)D = P(X)Q(X)I*R(X).

11



This relation is symmetric over P(X) and Q(X) so the pre-Lie relation is satisfied.
By symmetrization, a pre-Lie algebra is a Lie algebra.

Proposition 15. Let (g,>) be a pre-Lie algebra. We define the bracket {—,—} by:

{—, -} g¥g — 9
T e ®y — xpy—yd>a.

With this bracket, g is a Lie algebra denoted by grie.

Definition 16. Let (g,>) be a pre-Lie algebra. Consider the Hopf symmetric algebra S(g)
equipped with its usual coproduct A. The product > can be extended to S(g). Let a, b, ¢ and x
be elements such that a,b,c € S(g) and x € g. One defines

lba = a,

arl = ¢g(a)l,
(xa)>b = z>(adb)—(x>a)>b,
av>(be) = Y(aVpb)(a®bse).

On S(g), we define a product * by:

S(g)®Sg) — Slo)
* a®b — axb=YaV(a@>b).

The following theorem was proved by Oudom and Guin in [23] proposition 2.7 - theorem
2.12].

Theorem 17. The space (S(g),*, A) is a Hopf algebra which is isomorphic to the enveloping
Hopf algebra U(gric) of the Lie algebra gri. generated by primitive elements.

2.2 Hopf algebras of rooted trees
2.2.1 Hopf algebra Hgr of Grossman-Larson rooted trees

The Grossman-Larson Hopf algebra, written Hqr,, was introduced in [15] as a tool in the theory
of differential operators [16], 17]. It is graded, connected, cocommutative and not commutative.
By the Cartier-Quillen-Milnor-Moore theorem, it is isomorphic to the enveloping algebra of its
primitive elements. Panaite [24] proves that there exists a connection between Hgy, and the
graded dual H& of the Connes and Kreimer Hopf algebra [6]. Hoffman clarifies this connection
[18]. The two Hopf algebras are not equal but isomorphic in characteristic 0. In H%K, because of
grafts, there are symmetry coefficients which do not appear in Hgr,. Chapoton and Livernet [5]
corollary 1.10] prove that the pre-Lie algebra of rooted trees in Grossman-Larson Hopf algebra
is free and give another proof of the isomorphism between Hgr, and ’H%K. Oudom and Guin
[23, proposition 2.7 - theorem 2.12] use the case of Hgr, as model to prove a structural theorem
for the enveloping algebra of a pre-Lie algebra.

We recall the definition of Hqy, with the point of view of Oudom and Guin. Let g7, be the
vector space g7;, = Vect(t, t € Tr).

Definition 18. On g1, we define the following product:

th®ty — Yo Ttitas
seV(t2)

{ IO — I
b
where Ty, 1, s 15 the Tooted tree obtained by grafting t1 on the vertex s of ta.

The following theorem was proved by Chapoton and Livernet in [, corollary 1.10].

Theorem 19. The algebra (gr,,>) is the free left pre-Lie algebra generated by the rooted
tree of degree 1 (i.e. t=.).

12



Examples.

:>E:V+%/+l, EMZL/JJ.

Proposition 20. On S(gr,), the product %, built with the pre-Lie structure and the theorem
of Oudom-Guin, is given by:

Hor @ Hor, — Hew

X109ttty Qtagt - tnem  — > (t1 . toytngt - tngm, O)
U:Ig[[l,n]]HV(thrl...thrm)

where
V(tns1 .. tosm) is the set of the vertices of the forest tpy1 ... thtm,

(t1.. . tnytnt1 . totm,0) is the rooted forest obtained by grafting the tree t; on the vertex
o(i) for any i in I.

Examples.

V*zz\</+\f+ Vi,

st =aV.iodr v Yoy ..,
Pao. =20 4.1

2.2.2 Quotient Hopf algebra of sub-binary trees

Definition 21. 1. A rooted tree t is a sub-binary tree if all its vertices have a valency
less than or equal to 3. The set of rooted sub-binary trees is denoted by T ss.

2. A rooted forest F is sub-binary if all of its trees are sub-binary trees. We denote the set of
rooted sub-binary forests by Fss.

By direct checking we obtain the following proposition.

Proposition 22. We consider the vector space T = Vect(F,F € Fr \ Fss). It is a Hopf
biideal of HaL.-

Proposition 23. The vector space SBT = Vect(F, F' € Fsi) is a quotient Hopf algebra of

Proof. 1t is sufficient to consider the canonical surjection

Her — SBT

s : FeFn — F if F € Fss,
0 else.

The biideal Z is the kernel of IIggt. O

Remark. By duality, we can consider SBT® as a Hopf subalgebra of the Connes and
Kreimer Hopf algebra.

13



2.3 Dual of the dissection diagrams Hopf algebra

As the Hopf algebra Hp is graded and connected with finite-dimensional homogeneous com-
ponents, its graded dual ”H% is a graded connected with finite-dimensional homogeneous com-
ponents Hopf algebra. We now study this structure. Up until corollary 26] we use the same
approach as in [I0}, chapter 7, section 7.3].

Thanks to the Cartier-Quillen-Milnor-Moore theorem we have the following proposition.

Proposition 24. The Hopf algebra H% is isomorphic to the enveloping algebra U(gp) where
gp is the Lie algebra Prim(HS) of the primitive elements of Hy.

We denote by (Zr,) F,en,, the dual basis of disjoint union of dissection diagrams. We know
that generators of the Lie algebra Prim(H;) are gp = ((1) + Ker(e)?)1, so a basis of gp is
given by (Zp)pep. In order to describe operations of the Hopf algebra H3, it is sufficient to
define the product on Zp, with D a dissection diagram. Each dissection diagram D is primitive.
Concerning the product, we have the following proposition:

Proposition 25. Let D1 and Do be two nonempty dissection diagrams of respective degree
ny and ny and x a scalar. the product of Zp, and Zp, in this order is given by:

Zp,Zp, = (14 6D,,0,)ZD,Dy + Y, ¢(D1, Da; D) Zp
DeD

where for any dissection diagram D, the coefficient ¢(D1, Da; D) is a polynomial Qp in = de-
pending on D. We have:
@p(z) = (Zp, ® Zp,) o A(D).

Example.

z®z@ :2Z@®+2Z@+22@+(1+m)2@.

Corollary 26. The Lie algebra gp is the vector space gp = Prim(?—[%) equipped with the
bracket [—, —] defined, for any dissection diagrams Dy and Da, by:

(Zp,. Zp,) = Y (c(Dl,DQ;D)—c(Dg,Dl;D)>ZD.
DeD

ST s
ey

Now we aim at defining a Hopf algebra isomorphic to ’H% by providing it with a structure
of Oudom-Guin. We then create a morphism between Hgy, and ’H% using pre-Lie structures.

Proposition 27. The vector space gp = Prim(gp), equipped with > defined by:

Zp, ® Zp, — . ¢(D1,D9;D)Zp,

gpXgp — 9p
>
DeD

s a left pre-Lie algebra.



Proof. Let us first recall the notion of free-commutative right-sided combinatorial Hopf algebra

introduced by Loday and Ronco in |20, definitions 3.16, 4.1, 4.16 and 5.7]. A free-commutative

right-sided combinatorial Hopf algebra H is an associative commutative free Hopf algebra

(H,m,A) generated by Gen(H) and such that, for h € Gen(H), we have A(h) = 3 h(Y) @ h?
h

with h(?) € Gen(H). The Hopf algebra Hp is a free-commutative right-sided combinatorial Hopf
algebra. According to Loday and Ronco [20) theorems 5.3 and 5.8], the couple (gp,r>) is a left
pre-Lie algebra. O

Proposition 28. We consider the Hopf algebra S = (S(gp), *, A) where S(gp) s the sym-
metric algebra of dissection diagrams, the coproduct A is the usual coproduct of S(gp) and the
product x is induced by the pre-Lie product > defined on gp and definition[16. The Hopf algebras
S and H% are isomorphic.

Proof. 1t is a direct application of theorem and proposition We now identify H% with
the Hopf algebra obtained by the theorem of Oudom-Guin. O

Lemma 29. The pre-Lie subalgebra generated by the dissection diagram @ is a non
trivial pre-Lie subalgebra of gp.

Proof. The underlying vector subspace of elements of degree 2 of the pre-Lie algebra generated

by @ is generated by
OORVEVIEE S

And yet, the underlying vector space of elements of degree 2 of gp is generated by the three
dissection diagrams of degree 2. As a consequence the pre-Lie subalgebra generated by the

dissection diagram @ is a non trivial pre-Lie subalgebra of gp. O

3 Definition of a Hopf algebra morphism from Hgy, to H%

We want to describe a Hopf algebra morphism between the Grossman-Larson rooted forests
Hopf algebra and the graded dual of the Hopf algebra of dissection diagrams. Therefore we use
the underlying pre-Lie structure of the two algebras, the Hopf algebra structure and a chords
insertion process. To lighten the notation for any disjoint union U, the element Zy of Hf is
denoted by U.

Remark. If f: Hqy — H% is a graded Hopf morphism homogeneous of degree k > 0
then it is not surjective. Indeed, for any positive integers different from 1 there are less rooted
forests of degree n than dissection diagrams of degree n. Let n be a positive integer. We denote
by C,, the n-th Catalan number. There exists at most C), rooted forests of degree n. We denote
by d,, the number of dissection diagrams of degree n. Then, C1 = d; and, if n is greater than 2

then we have:
3n

ol
~ n) _ Goln+! _ (2n+2)...(3n)
(2n+1)<2:> (2n + 1)!(2n)! (n+2)...(2n)

S
Sk
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Definition 30. We call v the following pre-Lie morphism:

97r — @D

7 __>®

Now we just have to extend this pre-Lie morphism ~ as a Hopf algebra morphism. Let us
first recall the definition of the grafting operator.

Definition 31. The grafting operator, denoted by B, is given by:

B : K[E] — 97
| t1,...,tn € TR — the rooted tree obtained by grafting t1,...,t, on a common root.

Example. B(ty,tz) ="V "= ="V" = B(ty, 1;).
Proposition 32. The unique extension ¢ of 7y, built with the Oudom-Guin structure of Hat,
is defined by:
HGL — ’H%
Q:q tiooty — @(t1)...o(tn)
t — L(p(t)...o(tk)

where ty ...t is the rooted forest such that t = B(ty ...t;) and L is the following linear map:
HD — D

L2y p,...D, — Dl...an@.

Proof. Let tity be a rooted forest of 2 rooted trees. We have t1ty = t1 * ty — t1 >to s0, (ti1ta) =
o(t1)p(t2). We now assume that there exists a positive integer n > 2 such that for any rooted
forest ¢ ...t, of n rooted trees we have p(t1...t,) = p(t1)...@(t,). Let ti ...t 41 be a rooted
forest of n + 1 rooted trees. We have:

t1...0ng1 =ty T2 .. tny1 — (tl > tg)tg o lpgr — 2. tn(tl [>tn+1)
n—1
— Z to... ti(tl > ti+1)tz‘+2 . tn+1
=2

Then, by using the fact that ¢ respects the Oudom-Guin structure and the induction hy-

pothesis, p(t1...thy1) = @(t1) ... @(tnt1)-

Let t be a rooted tree of degree at least 2. There exists a unique positive integer k& and
a k-tuple (t1,...,t;) such that t = B(t1,...,t;). Oudom and Guin observe that the grafting
operator B corresponds to the extended pre-Lie product of a rooted forest on the tree of degree
1. It follows that t = B(ty1,...,tx) =t1...tx>. and o(t) = L(p(t1) ... o(tx)). O

Corollary 33. Let t be a rooted tree. If t has at least one vertex of valency strictly greater
than three, then v(t) = 0 so ¢ is not an injective morphism.

Proof. 1t is sufficient to prove the statement:
vn € N*\ {1,2}, V(D1,...,D,) € (D")", Dy...D,> @ =0.

We prove the result by induction. Let U and V' be two dissection diagrams. We recall that Id
is the identity morphism and [ is the projection on D*. By definition,

L(UV) :UV><D :U><V> @) —(UDV)D@
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S ((ZU®ZV®Z Jo (Id®A)oA)(G)G
Geb Q

G diagram

GeD
G diagram

S ((ZU®ZV®Z©) (A®Id)o (l®Id)oA>(G)G

G diagram

5 (ZUV®Z A(G )G iU £V,
cep @

G diagram

) (
2 GZG:D (ZUV®Z®><A(G)>G else.

Let Dy, Dy and D3 be three dissection diagrams. We have:

D1D2D31> @ —D1[><D2D31> @) —<D1[>D2)D31>@ —DQ(D1|>D3)[> @

By the previous calculation, DDy D3> @ = 0.

We now assume that there exists a positive integer n greater than or equal to 3 such that

for any n-tuple (D1, ..., D,) of dissection diagrams Dy ... D, > =0. Let Dy, ..., Dpy1

be n + 1 dissection diagrams. We have:

Dl...Dn+1l>@ :D11>(D2...Dn+1b®> — (D11>D2...Dn+1)l>@
_D1I>(D2...Dn+1b@> —(D1I>D2)D3...Dn+1[>@

_ZDQ D11>DH_1)D¢+2...DTL+1I> @
“Dy...Dy (D15 Dyt b @

=0
O

Corollary 34. The pre-Lie algebra generated by @ is not free, the pre-Lie algebra gp

is not free either.

Proof. The first result is a direct consequence of corollary For the second one we assume
gp is free as a pre-Lie algebra. Let V' be the vector space such that gp is the pre-Lie algebra
freely generated by V. Let B be a basis of V. By Chapoton and Livernet [5, corollary 1.10] gp
is isomorphic to the pre-Lie algebra of rooted trees decorated by B with the grafting product.
Since there is just one dissection diagram of degre 1, it is an element of B. As a consequence, the

pre-Lie algebra generated by @ is isomorphic to the pre-Lie algebra of undecorated rooted

trees with the grafting product and so it is a free pre-Lie algebra, which is impossible. ]
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Conjecture 35. We call N the vector space defined by:
N = Vect(F € Fgr, 3s € V(F),val(s) > 4)

i.e. the vector space generated by the non sub-binary forests. Then, N is the kernel of the Hopf
algebra morphism .

We now consider, as starting space, the quotient Hopf algebra SBT of sub-binary rooted
trees. We keep the same notation ¢ for this new morphism. We have:

SBT — Hj
) B eTs — Lig(),
71 Btit) € T — L(g(t)p(t)),
t1...th € Fss —> go(tl)...go(tn),

where L is the following linear map:

DtreKeDteDt — Dt

D1 — Drvb ,
L:
Di® Dy — D1D21>®.

Examples. We consider the rooted tree ¢t = I. We know that ¢t = B(.) so we have:

W):L(@) =)l o)

For the rooted tree t = V = B(..) we have:

R O0)
:2@ +2x@ +2@ +26,>
+2@ + 235@ + 2@ + 2@.

By construction, we have:

Lemma 36. Let t be a sub-binary rooted tree of positive degree n. Its image @(t) is homo-
geneous of degree n.

We now aim at determining L(D) and L(D;Ds) for any dissection diagrams D, D; and Ds.
To this end we formalize the dissection diagram construction by an insertion process of a chord
in one or two dissection diagrams. Let D be a dissection diagram of degree n > 1 and ¢ an
integer in the interval [0, n].

e The integer 7 is the vertex i (or the root, if ¢ = 0). If it is necessary for understanding
then the vertex ¢ is denoted by Sp ;.

e We call valency of the vertex ¢ the number vp(i) of chords of D attached to the vertex i.
e The set of the chords of D containing the vertex ¢ in common, counterclockwise labeled,

is defined by: Ap; = {CLD 1o s DUD(z)}
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e Let u < v be integers between 0 and n. We denote by {u,v} a chord connecting the
vertices u and v. As the dissection diagram has a natural orientation we do not recall the
orientation of the chord {u,v} in its notation.

e We consider an integer t € [0,vp(i)]. We define two subsets of chords: Aﬁ’){i ={ap,,...,ap,}

2 _ rod i
and Ay’ ={ap 41, - ’aD,vD(i)}'

If there is no ambiguity on the considered dissection diagram, we do not write its name in no-
tations.

Examples. We illutrate the way of labeling chords with a common vertex. In the first
example below, we consider a vertex different from the root and color it in red. In the second
one, we consider the root and we color it in yellow. In the two cases, chords with the considered
common vertex are colored in red. To relieve the notations, the s** chords from the vertex i is
written s instead of aiDys.

3.1 Imnsertion of a chord in a vertex of a dissection diagram D

We consider D a dissection diagram of degree n > 1. We want to insert a new chord in D.
Therefore we start by choosing a vertex i in D, we split ¢ in two vertices s; and s9 and we split
the chords of D connected to i. The new object is not a dissection diagram. It is sufficient
to build the chord between s; and sy to obtain again a dissection diagram. Following this
procedure, we can build all dissection diagrams G of degree n+ 1 with at least one chord a such
that Q{a} (G) =D.

3.1.1 The chosen vertex of D is different from the root.

We choose a vertex of D different from its root, so we just consider a positive integer 7 in [1,n].
Let ¢ € [0, f(i)] be a integer, used to split the chord of D with the common vertex i. We define
the following map:

¢(D) — {{u,v},0<u<v<n+1}

{u,v} if(u<i—landv<i-—1)
or (u<i—1, v=riand {u,v} € A",
Pis {u,v} — <SH{u,v+1} if (u<i—1, v=7iand {u,v} € AY?)

or (u=1and {u,v} € Af-’l),
{u+1,v+1} if (u =1 and {u,v} € A§’2) oru>i+ 1.

With this map, we consider a diagram G D,i,t of degree n + 1 which is open between the vertices
i and i+ 1 with €(Gp,it) = ¢i1(€(D)). This new diagram is not a dissection diagram, but an
intermediate object in the definition of the insertion process.
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Examples. We consider some dissection diagrams D and give their diagram G D,it- The
vertex ¢ to split is colored in red, the chords of D in Ai’){i are colored in blue and the chords in

t,2 .
A D are colored in green.

It is then possible to define an insertion endomorphism homogeneous of degree 1 of the vector
space of dissection diagrams. We consider a positive integer 7 (choice of the vertex to make the

insertion) and a non-negative integer ¢ (partition of the chord with the vertex i in common).
We define the map I'; ; by:

(D)n — (D)n-H
(I)i,t : D {GD,i,t with %(GD,i,t) = ¢Z7t(cg(D)) U {i, 1+ 1} ifi<nandt< UD(i),

0 else.

Remarks. Let D be a dissection diagram, i be a vertex and ¢ be an integer in [0, vp(7)].

1. We easily know the orientation of the chord {i,i 4+ 1} in Gp;; = ®; (D). Indeed, there
exists a unique integer [(7) such that the chord labeled by i is the element abl(i) of Ap ;.
If t <1(i) — 1 then {i,i+ 1} is labeled by i else {i,7 + 1} is labeled by 7 + 1.

2. The sum of maps ®;; is called operation 1.

Examples. We use the two previous examples by keeping the same color code. The chord
inserted is colored in red.

-
~

3 8

2. For D = , ¢, we have Gp 73 =

2 7

Jun
oo
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3.1.2 The chosen vertex of D is its root.

We now consider the root of D. Let 7 € [0, f(0)] be an integer to split the chords connected
with the root. There exists a unique integer s in [1,n] such that a%vT = {0, s}. We choose an
element A € {0, 1} and define two maps.

Case 1: A =0. The map gZ)SJ is defined by:

¢(D) — {{u,v},0<u<v<n+1}

¢87T: (v} — {u,v} ifu>lor(u=0andv<s-—1),
{v,n+1} ifu=0andv>s.

We call é)[\),(),r the diagram of degree n+1, open between the root and the vertex n+ 1 such that
‘K(éf),oﬁ) = gbé"T(%(D)). The map gbé‘i builds an open diagram by creating the vertex n + 1.

Example. We choose the dissection diagram D = . We consider 7 = 2

and A = 0. We have: CNT‘%,O’2 = 3 8

2 9

Case 2: A =1. We define the map ¢6\,T by:

¢D) — {{u,v},0<u<v<n+1}
d)é‘,T: (w0} — {u+1Lv+1} fu>lor(u=0andv<s—1),
{u,v+1} if u=0andv>s.

In this case the diagram é)li\LOJ of degree n + 1 is open between the root and the vertex 1 and

C(Gdo,r) = 60 (€(D)).

Example. We use again the dissection diagram D = with 7 = 2 but

now A = 1. We obtain: CNJ}),O’Q =7 5.



We now define the endomorphism homogeneous of degree 1 coding the insertion of a chord
in the root. Therefore we consider a non-negative integer (partition of the chords connected
with the root) and A € {0,1}. We define gb())‘J by:

D) — (D)nn

@817 : D Gy-(D) if T <wp(0),
0 else

where the set of the chords of G} (D) is:

€ (G- (D)) = ¢.(€(D)) U{{0, (1 = \)n + 1}}.
Remarks. Let D be a dissection diagram, 7 be an integer in [0, vp(0)] and A be an element
in {0,1}.

1. The chord inserted to build G/\D707T is naturally oriented. Indeed, either A = 0 and we build
{0,n + 1} (chord labeled by n + 1), or A = 1 and we build {0, 1} (chord labeled by 1) in
G)b 0,7°

2. The sum of all maps CID(AM is called operation 2.

Examples. We use the two previous examples. The inserted chord is colored in red.

5 5 6

'y
~

7

1. For D = , we have ®f ,(D) = * 5.

8

'S
~

7

2. For D = , we have ®§,(D) = * 5,

8

3.1.3 Computation of L(D) where D is a dissection diagram of degree n > 1.

Proposition 37. Let D be a dissection diagram of degree n > 1, i and j two integers in
[1,n], t; (respectively t;) be an integer in [0, f(i)] (respectively in [0, f(4)]), 1 and o two
integers in [0, f(0)] and, A1 and A2 two elements in {0,1}. We have:

L (@5, (D), {iyi+1}) = (@5,(D), {5 +1}) <= (i = and t, = t2),

2. (d)

0,71

(D), {0, (1= An+1}) = (2, (D), {0, (1= Ao +1}) = (A1 = Ao and 71 = 7),

8. (@14, (D), {i,i +1}) # (@1, (D), {0, (1 = A)n + 1),

Proof. Let D be a dissection diagram of degree n > 1, ¢ and j two integers in [1, n], ¢; (respec-
tively ¢;) be an integer in [0, f(¢)] (respectively in [0, f(j)]), 71 and 7 two integers in [0, f(0)]
and, A\; and A2 two elements in {0,1}.
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1. It is sufficient to prove the implication:
(Pig, (D), {30 +1}) = (i1, (D), {3,0 + 1}) = t1 = ta.

We denote by p; (respectively by ps) the vertex ¢ of the dissection diagram ®; 4, (D) (re-
spectively the dissection diagram ®; 4, (D)) and we consider its valency v(p;) (respectively
v(p2)). We obtain v(p1) = t1 + 1 and v(p2) = t2 + 1. If we assume that the two couples
(®i, (D), {i,i+1}) and (P;+,(D), {i,i+1}) are equal then the implication becomes trivial.

2. We put A = A;. To prove the equivalence, it is sufficient to consider the implication:

(@), (D), {0, (1= Nn+ 1)) = (), (D), {0, (1= N+ 1}) = 7 = 7.
We use the same process as before.
3. As i is positive, it is trivial.

O]

Corollary 38. Let D be a dissection diagram of degree n > 1. We call op the number
of different couples (G,a), where G is a dissection diagram of degree n + 1 and a is a chord
a={u,v} with0 <u <v<n+1, obtained by operations 1 and 2 applied to D. We have:

op =3n+2+wvp(0).

Proof. Let D be a dissection diagram of degree n > 1. By direct calculation, we have:

operation 1

operation 2

(UD(i) + 1) + 2(’UD(O) + 1)

2
S

!
M=

1
3n —vp(0)) +2(vp(0) + 1)
n+ 24 vp(0).

Il

Proposition 39. Let D be a dissection diagram of degree n € N*. We have

L(D) — Zxk{al}(¢l’t(D))¢zvt(D) —|— Z |:¢8,T(D> + ¢67T<D):| )
ie1,n] 7€[0,vp(0)]
t€[0,up(3)]

with a; = {i,i+ 1}. In other words,

L(D) =Yy (D)+ Y ®:y(D)+ > [®) (D) + @ (D],
i€1,n] i€[1,n] 7€[0,0p (0)]
te0,1(7)—1] tel(i),vp(9)]

where for any integer i € [1,n], (i) is the unique integer in [1,vp(i)] such that the chord aiDJ(i)
of D is labeled by 1.

Proof. The fact that dissection diagrams obtained with operations 1 and 2 are elements of L(D)
is trivial.

Let (G,a) € (D)nt+1 x €(G) such that gy = D. We write a as a = {i,j} with {4,j} €
Hu,v},0<u<v<n+1}.
Case 1 : i # 0. q43(G) = D (only one diagram) so j =i + 1. We have then

(G,a) = (®i(D),{i,i+1}) with t = vg(z) — 1.
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Case 2 : i = 0. q{43(G) = D (only one diagram) so j € {1,n + 1}. We have then

(G a) _ {((I)é,T(D)v {07 1}) with 7 = UG’(O) -1 lfj =1,
((I)g,f(D)v {0,n+1}) with 7 =vg(n+1)—1 if j=n+1.

By direct calculation, we prove the following corollary.

Corollary 40. We assume x € N. Let D be a dissection diagram of degree n € N*. We
denote by or(py the number of terms in L(D) counted with multiplicity. We have:

n

oppy =3nz+ (L —a) Y 1(i) + (2 — 2)vp(0) + 2
=1

where for any integer i € [1,n], I(i) is the unique integer in [1,vp ()] such that the chord af(i)
of D is labeled by 1.

Proposition 41. Let x be a scalar in K. Let D1 and Ds be two nonempty dissection
diagrams. We have the equivalence:

L(Dl) = L(Dg) <— Dy =Ds,.

Proof. Let x be a scalar in K. Let D; and Dy be two nonempty dissection diagrams. We recall
that vp, (0) (respectively vp,(0)) is the root valency of D; (respectively Dy). We know that,
for any positive integer n, the projection of L(D;) (respectively L(Ds2)) on the linear space of
dissection diagrams with the root valency equal to n is positive if n € [1,vp, (0) + 1] \ {vp, (0)}
(respectively n € [1,vp,(0) + 1] \ {vp,(0)}), and equals zero if n > vp,(0) + 2 (respectively
n > vp,(0) + 2). As a conclusion, if vp, (0) # vp,(0) the two elements L(D;) and L(D3) are
different. We then consider two dissection diagrams D; and Dy such that vp,(0) = vp,(0).

&)
We assume that L(D;) and L(D3) equal. We write Dy and Dg as Dy = @ and

12
Dy = . We define S; = , S9 = , P = )
(©2) @y D ©3)

P = . The sets {S1,S52} and {Py, P»} are equal. Indeed, by inserting a chord,

()

there exists only two ways to obtain a dissection diagram with a root valency equal to vp, (0)+1
(respectively vp,(0) 4+ 1). There are different cases.

If S1 = S5 or S1 # Sy with S1 = P; the result is trivial.

If S; # 59 and S; = P» then the dissection diagrams A;, Ao, Bi, By are all empty. Fur-

thermore, we have @ @ @ @

induction on their root valency, we obtain that C7 = C5 and the proposition is proved.

24



Proposition 42. Let assume that R C K and x € R%. Let D be a dissection diagram of
degree n greater than or equal to 2. We define the pairing

(=, =) : Hp®Hp — K
’ ’ Di..D,®G...G —> ZDl...Dk(G1~~-Gl)~

Then for any dissection diagram D of degree n > 2, there exists a dissection diagram G of degree

n —1 such that (D, L(G)) # 0.

Proof. Let x be a positive scalar and D a dissection diagram of degree n greater than or equal to
2. As there is not any intersection between its chords there exists a chord a such that a connects
two consecutive vertices. We call G the dissection diagram G' = g3 (D). It has a degree equal
to n — 1, which establishes the proposition. ]

Proposition 43. Let assume that R C K and x € RY.. Let n be a non-negative integer and
en € Tr the ladder of degree n. By using the previous pairing we have that for any non-negative
integer n and any dissection diagram D of degree n the scalar (D, p(ey)) is positive.

Proof. We give a recursive proof. The result is trivial for e;. We assume the result true for a

particular positive rank n. We write p(e,) = > agG where each ag is positive. Then,
Ge(D)n
diagram
p(ent1) = p(en) > = > acL(G)= Y  bpD
Ge(D)n De(D)n+1
diagram diagram

and, according to the previous proposition, all bp are positive scalars. The result is true for the
rank n 4+ 1, so the proposition is proved. ]

3.2 Insertion of a chord in two dissection diagrams

Let Dy and D2 be two dissection diagrams of positive degree n; and no. We choose a vertex
i of Dy, a vertex j of Dy, integers t € [0,vp, ()] and 7 € [0,vp,(j)]. We insert a new chord
by using the following steps. Thank to the opening maps defined in section we obtain two
open diagrams. Then, we change the vertices labels and insert a new chord to have a dissection
diagram of degree n; + ny + 1. Since a dissection diagram has only one root, we open at least
one of the two dissection diagrams D; and Ds at the root. We introduce an integer A € {0,1}
that will be useful in the sequel.

3.2.1 Open D; at the root and D, at another vertex.

We consider the root of Dy, an integer ¢ € [0,vp, (0)] (partition of the chords of D; connected
with the root), an integer A € {0,1} (location of the root of the open diagram é())\,t obtained
with Dy), a vertex of Dy different from the root (i.e. an integer j € [1,n2]) and an integer
T € [0,vp,(j)] (partition of the chords of Dy with the vertex j in common). The root of the
dissection diagram G)bh Do .t.j built after the insertion is given by the root of Ds.

According to paragraph thanks to the map gb())"t (respectively ¢; ), we can consider the
open diagram é)b1707t equipped with the set qﬁat(‘ﬁ(Dl)) (respectively GDM-,T equipped with the
set ¢ (€ (D2))).

To change the labels of the chords, as the root of G)l‘)h Da t.j,- Originates from the root of D,
we consider the maps:

PA(E(G1) — {{u,v},0<u<v<ni+ny+1}

S I {fu+j—X\v+j—\} if u>1,
’ U, U
{J+An1+1),v+j—-A} ifu=0
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and
$j+(¢(G2)) — {{u,v},0<u<v<n+ny+1}

{u,v} ifu<jandwv<j,
{u,v} — H{u,v+n1} ifu<jandov>j+1,
{u+n,v+n} ifu>j+1.

With these functions, we have a diagram of degree ni +no + 1 which is not a dissection diagram
since there are only n; + ng chords. We just have to build the chord {j,j + n; + 1}.

We now define a morphism from D ® D to D homogeneous of degree 1. We consider two
non-negative integers ¢t and 7, an element \ in {0, 1}, a positive integer j and the following map:

(D)nl ® (D)nz — (D)n1+n2+1
| G .
t,4,7 * Dl & Dg SN D1,Da,\t, 5,7
0

7D27j77— .

if t <wp,(0), 7 <ngand 7 <wvp,(J),

else,
where the set ‘K(G’\D17D27t7jj) is given by:

C(GD, Dot jr) = VD1.4(904(€(D1))) Uy jir (67,7(€(G2))) U{{4, 5 +n1 + 1}

Example. We use the dissection diagrams D; = 5 and Dy = 3

withA=1,t=1,7=2and 7 = 1. We first build ébl,O,l and C~¥D272,1 by keeping the color code
explained in section 3.1} Finally, we make the insertion. The old root of D; becomes white and
the new chord is colored in red. We have:

2 2 3
—
D, = =L Gl on =
1= 3 D1,01 = )
A=1 s . Vs
2

Remarks. Let D and Dy be two dissection diagrams of respective positive degree ny and
ng and A € {0,1}, t € [0,vp, (0)], 5 € [1,n2] and 7 € [0,vp,(j)] be integers.
1. It is not necessary to consider the two possible values of A. Indeed by direct calculation

we have I'); (D1 @ Dy) =Ty 2(D1 ® Dy).

2. We easily know the orientation of the inserted chord {j,j +n; + 1}. Indeed there exists a

unique integer (j) such that the chord a‘jjﬂ(j) of Dy is labeled by j. If 7 <1(j) — 1 then
the chord {j,j + n1 + 1} of Ff‘,j’T(Dl ® Ds) is labeled by j else 7 > I(j) and the chord
{j,j +n1+1} of T}, (D1 ® Dy) is labeled by j +ny + 1.

3. We call k the map sending D ® Dy to Do ® D1. The sum of maps of types Fg\m or 1“;\7]-77 oK
is called operation 3.
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3.2.2 Open D; and Ds at the root.

We now work with the root of the two dissection diagrams. We consider an integer ¢ € [0, vp, (0)]
(partition of the chords of D; connected with the root), an integer 7 € [0,vp,(0)] (partition of
the chords of Dy connected with the root) and two integers A1, Ay € {0,1} (location of the root

of the two diagrams é)bll,o,t and CNJ)[‘)Q%OJ, built with the opening maps defined in section .

The root of the dissection diagram G)L‘}I’Afb + »» built after insertion, is again given by the root of

Ds. There are two cases.

Case 1: A=A =0and \; =1—XA=1. According to paragraph thank to the map (b(l)’t
(respectively ¢3 ), we can consider the open diagram Gl L0, €quipped with the set ¢4+(€(D1))
(respectively é%z,oﬁ with the set ¢f . (¢'(D2))).
To change labels, as the root of G}ji Dot 1S given by the root of Dy, we use the following
maps:
$04(€(D1)) — {{u,v}, 0<u<v<ng+np+1}
Vbl,t: (w0} — {{u—f—m,v—i—m} ifu>1,
’ {u,v 4+ na} ifu=0
and
0o . ¢8’T(C€(D2)) — {{u,v},0<u<v<n;+ny+1}
"Dyt - { {u,v} — {u,v}.
The diagram of degree ni 4+ ng + 1 built with the previous map is not a dissection diagram since
there are just n; + ng chords. We need only add the chord {0,ng + 1}.
We define a morphism from D ® D to D homogeneous of degree 1. Let ¢ and 7 be two
non-negative integers and we consider the map:

(D)n1®(D)n2 - (D)n1+n2+l

1,0 .

P(tJ:T : -Dl ® D2 N {GDl,DQ,t,T ST t S UDy (0) and T S UDy (O)?

0 sinon,
with
1,0
C(GBy .y ir) = VD1t (05,4(€(D1))) U, (60, (€(D2))) U {{0,n2 + 1}}.
2 2

Example. We use the dissection diagrams D; = ; and Dy = | 3

with ¢t =1 and 7 = 1. We have:

D, =

Dy =

I, (D1 ® Dy) =




Case2: A\=JXy=1and \{ =1—)X=0. We now consider the open diagram CN;ODl’O’t equipped
with the set ¢f ;(¢'(D1)) (respectively é}:)Q,o,r with the set ¢ . (¢'(D2))).
To change labels we use:

o ) #(E(D1) — {{uv},0<u<v<ng+ny+1}
ot {uv) — {u)
and
(b(l),r(%(DQ)) — {{u7v}7 O0<u<v<n +na+ 1}
Vbgor : (o} — {u+n,v+n} fu>1,
’ {u,v+n1} if u=0.
To have a dissection diagram of degree nj + ng + 1 we add the chord {0,n; + 1}.

Let t and 7 be two non-negative integers and we define the morphism I’;T homogeneous of
degree 1 by:

(P)ny @ (D)ny —

(D)n1+n2+1
1 0,1 .
I‘t,T : Di®Dy — {(?Dl,Dz:tﬂ' lﬁt < Up, (0) and 7 < UD; (0),
else,

with

C(GH! D in) =150 1(83,(€(D1))) Unb, (64 (€(D2))) U{{0,n1 + 1}1.

2 2
Example. With Dy = 1@3,D2 1<A>3,tland71we have:
2

Remarks.

Let Dy and D> be two dissection diagrams of respective positive degree ny and
ng and Aj, Ay € {0,1}, ¢t € [0,vp, (0)] and 7 € [0,vp,(0)] be integers.

1. By direct calculation we have:
[y(D1 ® D2) =T7,(D> @ D1) and Ty (D1 ® D2) = T,(D2 @ Dy).

2. The two cases (A1 = 0, A2 = 0) and (A\; = 1, A\ = 1) can be ignored. Indeed, it is sufficient
to use the two maps

$0+(€(D1) — {{u,v}, 0<u<v<ni+ny+1}

(0} — {u+no+1,v+ny+1} siv<n
{0,u+ny + 1}

~0 .
’YDl,t .

siv=n1+1
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and
(rb(l),t(%(Dl)) — {{U,’U}, 0 §u<v§n1—i—n2—|—1}

b {u,v} — {fu—Lov—1} stuzl,
7 {v—1,n1+1} siu=0,

. . . 0,0 1,1 .
and the dissection diagrams GD1,D27t,T and GD1,D2,t7T of degree ny + ng + 1 with

GG 1 in) = A% 183 ,(€(D1)) UAD, (69 (€(D2))) U {{0,n2 + 1}},
GG pir) = b a(@6,(€(D1)) U, .- (06 (€(D2))) U {{0,n1 + 1}}.

0,0 _~1,0 0,1
Then we have: GD1 Dotr = GD1 Dot and GD1 Dotr = GDl,Dz,t,T‘

3. The sum of maps of type Ff:T is called operation 4.

3.2.3 Computation of L(D;Dy) where (D1, D) € (D), X (D)n, and nj,ng > 1.

Proposition 44. Let Dy and Doy be two dissection diagrams of positive degree ni and ns, 1
in [1,n1], 0 in [0,vp, (3)], p in [0,vp,(0)], 7, j1 and jo in [1,ne], T, respectively 11, respectively
T2 in [0,vp,(§)], respectively [0,vp,(j1)], respectively [0,vp,(j2)], w, w1 and wa in [0,vp,(0)],
t, t1 and ty in [0,vp, (0)]) in A, A1, A2 in {0,1} be integers.

We assume first that D1 and Dy are two different dissection diagrams. We have the following
statements:

(F%l J1, Tl(Dl ® Do), {j1. g1+ +1}) = ( t2,j2, TQ(Dl ® D3),{j2, 72 + n1 + 1}) is equivalent
to (j1 = j2, t1 = ta and 71 = T2),

2. (T, (D1®D2), {0, \iny + (1= A)ng +1}) = (T2, (D1 ® D2), {0, Aany + (1 — A2)na +1})
is equivalent to (t1 = ta, w1 = wy and A\ = \2),

3. (T}

t1,J1,71
4. (T}, (D1 @ Da), {j,j +n1+1}) # (T}, (D2 ® D1), {i,i + ny + 1}).

We assume that D1 equals Do and we denote D = D1 = Dy. We have the following state-
ments:

(D1 ® Do), {j,j +n1 +1}) # (T 0, (D1 @ D2), {0, Aony + (1 = Ag)na + 1}),

v (D D), {1, + 11) = (T, 5, (D © D), {ja, o + 1 + 1) s equivalent to
J1=1J2, t1 =t2 and 1, = T2),

5. (I
(J
6. (T?,(D® D),{0,n1 +1}) = (T, N(D ® D), {0,n1 +1}),
7. (T4 gy (D@ D) {5, § + n1+1}) # (07, ,,(D ® D), {0,n1 + 1}).
Proof. We assume that Dy and Ds are two different dissection diagrams.
1. It is sufficient to prove:

Pt117j77'1 (Dl & DQ) = Ftlz’ij (D1 X DQ) = (tl =ty and 7 = 7'2).

We assume K| = Ftlel(Dl ® D3) equals Ko = F%”m(Dl ® D3). We denote by pi1(j)

(respectively by pa(j)) the vertex j of the dissection diagram K; (respectively of the
dissection diagram K5) and we consider its valency v1(j) (respectively v2(j)). We have:

Ul(j) :UDl(O) —t1+71+1 :Upl(O) —to+Tm+1 :Ug(j).

We now use the subset of chords Ag, ] (respectively A, ;) and the chord a = {j, j4+n1+1}
too. We know that a = aKl 4l = aK2 rpi1 SO WE have t1 = t2 and 7 = 7.
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2. We assume that the two dissection diagrams Fi\ll,w (D1®Ds) and Fi‘;w (D1® D3) are equal.
We further assume that the two chords {0, \yn1+(1—A1)n2+1} and {0, Aani+(1—A2)na+1}
are equal and A1 # \o. We then obtain ny = ny. Without loss of generality we can use
the case A\; = 0 and Ay = 1. We denote K; = Fi‘llm (D1 ® Dg) and Ky = I‘i‘;m(Dl ® Da),
and consider the subgraph K (respectively the subgraph K3) created with vertices from
the set {1,...,n; + 1} and contract {0,n; + 1}. Since K; and K are equal, the resulting
dissection diagrams are equal as well. And yet, with K; (respectively K5) we obtain Do
(respectively D7) and thus D; = Ds. We can conclude that A\; and Ay are equal. Without
loss of generality, we assume A\; = Ay = 0. Let p; (respectively p2) be the root of K;

(respectively K3). We consider their valency vy (respectively vy). We have:
v1 =vp,(0) —wi1 +t1 +1=0vp,(0) —we +ta+ 1 = vs.

We now use the subset of chords Ak, o (respectively Ak, o) and the chord a = {0, ny +1}.
We have a = a?ﬁ,tﬁrl = a(}(z’tﬁl so t1 =t and wy = wa.

3. As j is positive, this point is trivial.

4. We assume there exists integers j € [1,na] (respectively ¢ € [1,n1]), t € [0,vp,(0)] and
7 € [0,vp,(j)] (respectively p € [0,vp,(0)] and ¢ € [0,vp, (?)]) such that

(Ftl,j,T(Dl ® D2)7 {Ja] +ny+ 1}) = (F;J,i,,g(DQ ® Dl)a {272+ ng + 1})

We obtain i = j and n; = ns. We denote K1 = Ftl’j’T(Dl ® Dy) and Ky = lej’i,g(Dg ® D),
we consider the subgraph of K (respectively K») formed by vertices in {1,...,j} U{j +

ny+1,...,7 4 2n; + 1} and we contract {j,j + ni + 1}. We then obtain D; = Ds.
We now assume D = Dy = Ds.
5. It is sufficient to consider the proof of I}
6. It is true by definition.

7. It is trivial because j is positive.

By direct calculation, we prove the following corollary.

Corollary 45. Let Dy and Dy be two dissection diagrams of positive degree ny and ny. We
define op as the numbers of different couples (G,a) where G is a dissection diagram of degree
ni+na+1 and a a chord a = {u,v} with 0 < u < v < nj+ng+1 obtained by applying operations
8 and 4 on D1 and Do. We have:

ni n2

(vp,(0) +1) >3- (vp, (4) + 1) + (vp, (0) + 1) - (vp,(4) +1) if D1 # Da,

o(Dy,Dy) = e 7=0

ni

(vp,(0) + 1) ;)(le (1) +1) if D1 = Do,
_ {(UD2 (0) + 1)(3711 + 1) + (UD1 (0) + 1)(3712 + 1) if D1 # Do,
(’UD1 (0) -+ 1)(377,1 + 1) if D1 = D».

Proposition 46. Let Dy and Dy be two dissection diagrams of positive degree ni and no.

1
L(DyDy) = Y a*teim) Thor P18t () g )

te [[0,1)[)1 ]
je Hl,nz]]
7€[0,up, (5)]
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1
+ Z xk{ai7n2}(FT’i’t(D2®D1))F1 (D2 ® Dl) + Z F??:T(‘Dl X -DQ)

T,0,t
7€[0,up, (0)] Ae{0,1}
ie[1,n1] t€[0,vp, (0)]
te[0,up, ()] 7€[0,vp, (0)]

with
ajn, = {4, 7 +mn1+ 1} and a;pn, = {3, 4+ ngo + 1}.

In other words,

L(D1Dg) =% T} ; (D1 ®@ Do) + ) Ty (D1 Dy)

te[0,up, (0)] te[0,vp, (0)]

jeﬂl,nz]] jGHl,ng]
7€[0,l2(5)—1] T€[l2(4),vpy (5)]

+3 I (Dy®Dy)+2Y Tt (Do®Dy)+ > T2 (D1 ® D)
7€]0,up, (0)] 7€[0,up, (0)] xe{0,1}

iElIl,nﬂ] iE[[lﬂ’llﬂ tE[[O,’UDl (0)]]
te[0,l1(i)—1] tell(i)vp, (6)] 7€[0,0p, (0)]

where for any couples (i,j) € [[l,nlﬂ x [1,na], (11(7),12()) is the unique couple of integers in
[0,vp, (4)] x [0,vp,(4)] such that ap, 1y ™ € (D1) is labeled by i and ang,lg(j) in €(D2) is
labeled by j.

Proof. We recall that, if Id is the identity morphism and [ is the projection on DT, we have:

Ggp (ZD1D2 ® Z@> (A(G))G if D1 # Do,

G diagram
L(D1Dy) =

G diagram

2 GXE:D <ZD1D2®Z@)<A(G))G else.

Let (G,a) € (D)nytny+1 X €(G) be a couple diagram-chord such that g, (G) = D1Da. We
write a as a = {3,j} with 0 < i < j < n; + na + 1. There exists v € [1,v5(7)] such that
al, = {i,j}. qu(G) = D1Dy so j =i+n+ 1 with n € {n1,na}.

Case 1 : i # 0. We consider the subgraph S of G with vertices

{O,...,i}U{j,...,nl+n2+1}.
We have:

<G7a) =
(T;,(D1® Dy), {i,i+mny +1}) with t = vp, (0) —vg(i) +vand 7 =v =1 if q(o3(S) = Dy,
(PL.. (D2 ® Dy),{i,i+mng+1}) witht =v —1and 7 = vp,(0) —vg(i) +v if 4fa}(S) = D1.

T’iatv

Case 2 : 1 = 0. We use the subgraph S of G with vertices {0, ...,7}. We have:
(G’ CL) =

{(

(

Dy1®, D3),{0,n2 + 1}) with ¢t = vp,(0) —vg(0) + v and T =v -1 if g (5) = Dy,

Ly
I'Y (D1 ® Dy),{0,n1 4+ 1}) with t = v — 1 and 7 = vp,(0) — v (0) + v if ge3(S) = Ds.

O]
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Corollary 47. We assume that x € N. Let D1 and Do be two dissection diagrams of positive
degree ny and na. We call opp, p,) the number of terms in L(D1Ds) counted with multiplicity .

or(Dipo) =Dy (0) +1) |z(B3n1 + 1) + (1 —z le (1—2)(vp,(0)+1)

09, (0) + 1) |3na + 1)+ (1 - 2) 3 1(G) + (1~ 2)(u,(0) + 1)

where, for any (i,7) € [1,n1] x [1,n2], (I1(7),l2(j)) is the unique element in [[O vp, (7)] %
[0,vp,(j)] such that the chord aD 1) of Dy is labeled by i and the chord aD I of D5 is
labeled by j.

Proposition 48. Let x be a scalar. Let D, D1, Do, G1 and Gy be five nonempty dissection
diagrams. Then,

1. L(D) # L(G1Gh),
2. L(Dng) = L(Gng) < ((Dl,Dg) = (Gl,Gz) or (Dl,Dg) = (GQ, Gl))

Proof. Let = be a scalar in K. Let D, Dy, Do, G; and G five dissection diagrams. We
consider their root valency. As in the proof of proposition {41} if vp(0) # vg, (0) + ve,(0) and if
vp, (0)4+vp,(0) # v, (0)+vg, (0) then L(D) # L(G1G2) and L(Dng) ;é L(Gle) We consider
the case where vp(0) = vg, (0) + vg,(0) and vp, (0) + vp,(0) = va, (0) + va, (0). We write the

® &) &)
dissection diagrams as D = @ , D1 = @ @)
()
D, ©),
and Gy = @ . We will use T} =
D, (=) @ @
Sl = ) S2 = ) P =
@) | @9 @ | (@) @ @ @ @
& & Gfke e
, Ho = , K1 = . We recall that
-

1. We introduce J; = and Jy =

We assume L(D) and

L(G1G3) equal so vp(0) > 2. There are two cases:

(a) If vg, (0) and ve, (0) are both different from 1, then there exists an integer i € {1,2}
such that J; = K;. It is impossible.
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(b) We now assume that there exists at least one integer i € {1,2} such that vg,(0) = 1.
Without loss of generality, we can consider ¢ = 1 so ; is empty. We use know the
fact that {11,T>} and {Pi, P»} be equal. We have two cases.

i. In the first one, (71, T5) equals (P;, P») so a1 and 1 are empty, G1 = X1, A = g,

B = 35 and we have more
@ | ®
=D = .
NNIC
Thereafter A and B are empty and we have the equality

So, there exists a non-negative integer n such that 9 = X, and then D = X, o,
G1 = X7 and X,,4+1. It is impossible.

ii. In the second one, (11,7%) equals (P2, P;) so ay and 2 are empty, A = ay,
B = 1 and we have two equalities

So, we obtain

If v5 is empty then A and B are empty too and we obtain D = X5 and G =
Go = X;. It is impossible. The diagram -, is not empty. As for any integers ¢
and j in {1, 2}, the dissection diagrams J; and K are differents, there exists two

& |

nonempty dissection diagrams W; and Wy such that J; = and

@ | &

Jy = . Then A and B are empty and we obtain that D, G; and

O

G are corollas. It is impossible.

Thus, L(D) and L(G1G2) are different.
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2. We assume L(D;D3) and L(G1G2) equal. We have to consider three cases.

(a)

(b)

()

In the first case, vp, (0), vp,(0), va, (0) and vg, (0) are all equal to 1. As the two sets
{51, 52} and {P;, P»} are equal the result is trivial.

In the second case, vp, (0), vp,(0), v, (0) and v, (0) are all positive integers different
from 1. As the two sets {Hy, Ho} and {K7, Ko} are equal the result is trivial.

In the third case, vp,(0) = 1 and vp,(0) # 1. The sets {S1,S2} and {P1, P>} are
equal so we assume without loss of generality that S; = P; and Sy = P». For any
1€ {1,2}, we have A; = o; and B; = f3;.

We start by proving that there exists a unique integer ¢ € {1, 2} such that vg,(0) =
1. We need only prove existence. We assume vg, (0) and vg,(0) different from 1.
We consider Q; (respectively €23) the set of dissection diagrams of valency vp, (0) +
vp,(0) in the root built to obtain L(D;Ds) (respectively L(G1Gz2)). By writing

Y2 with 73 of valency 1 in the root we have two different possiblities;

N

either (7 = equals 221 = either {loo =

degree. We consider K7 and Kj. If there exists i € {1,2} such that K; = H; or
Ky = H; the one of the two couples (G1,G2) and (G, G1) equals (D;, D_;13). Is
is not consistant. Thus there exists a nonempty dissection diagram W such that

OB

K = and we obtain

deg(D1) > deg(By) = deg(Ga) > deg(ag) + 1 > deg(Dy)

which is impossible.

We thus know that there exists a unique integer i € {1,2} such that vg,(0) = 1. If

N

i = 1 then the result is trivial. If ¢ = 2, then we have ;; =

@
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equals 251 =

Ay
or Qg9 = . Furthermore v,, (0) =
Ng

1)02(0) so v1 and Cy are equal. If 9171 = 9272 then A1 = Ay = a1 = ag and
B1 = BQ = 51 = ,82 SO (DI,DQ) = (GQ,Gl). If Ql,l 75 9272 then Ql,l = 92’1 and

which is impossible.

We have proved the statement
L(Dng) = L(Gng) < ((Dl,Dg) = (Gl,Gg) or (Dl,Dg) = (GQ,Gl)) .
O

Proposition 49. Let n be a positive integer. There exists a basis By of sub-binary forests
and a basis By of the dissection diagrams algebra such that the matriz in those bases of the
restriction of p on homogeneous elements of degree n is triangular by blocks.

Proof. Let n be a positive integer and ¢ a sub-binary tree of degree n. We call m(t) the number
of vertices of t with two children. For any disjoint union of dissection diagram U = Dy ... Dy
the integer k is called length of U and is denoted by u(U). Let D be a dissection diagram of
degree n. We call m(D) = max{u(qc(D)), C € €(D)}. By definition of L, if m(D) < m(t)
then Zp(p(t)) = 0. O

Corollary 50. Let n be a positive integer. We recall that e, € Tr s the ladder of degree n,
Y, € D is the path tree of degree n and X, € D is the corolla of degree n. Let t be a sub-binary
n! if t = ey,

tree. We have Zy, (o(t)) = { and Zx, (p(t)) # 0. Actually Zx, (p(t)) = 240

0 else
where int(t) is the number of internal vertices i.e. the number of vertices with at least one child.

Remark. By considering ¢ as the Hopf algebra morphism from SBT to ), we can refor-
mulate conjecture [35| as follow: ¢ is injective. Results and [49] suggest that the conjecture
is true. Direct calculations prove that the morphism ¢, when restricted to degrees 1, 2 3 or 4,
is injective.
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