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Abstract. In this article, we study the Hopf algebra HD of dissection diagrams introduced
by Dupont in his thesis, more precisely we focus on its underlying coalgebra. We use the version
with a parameter x in the base field. We conjecture it is cofree if x = 1 or x is not a root of
unity. If x = −1 then we know there is no cofreeness. Since HD is a free commutative right-sided
combinatorial Hopf algebra as defined by Loday and Ronco, then there exists a pre-Lie structure
on the primitives of its graded dual. Furthermore H~

D and the enveloping algebra of its prim-
itive elements are isomorphic. Thus, we can equip H~

D with a structure of Oudom-Guin. We
focus on the pre-Lie structure on dissection diagrams and in particular on the pre-Lie algebra
generated by the dissection diagram of degree 1. We prove that it is not free. We express a
Hopf algebra morphism between the Grossman-Larson Hopf algebra and H~

D by using pre-Lie
and Oudom-Guin structures.

Keywords. Combinatorial Hopf algebras, dissection diagrams, cofreeness, rooted trees, pre-
Lie algebras, enveloping algebras, morphism, insertion process.

Résumé. Dans cet article, nous nous intéressons à l’algèbre de Hopf à paramètre HD des
diagrammes de dissection introduite par Dupont dans sa thèse de doctorat. Nous cherchons
plus particulièrement à étudier sa cogèbre sous-jacente. Nous conjecturons qu’elle est colibre
si x = 1 ou x n’est pas une racine de l’unité. Il n’y a pas de coliberté lorsque le paramètre
vaut −1. L’algèbre de Hopf HD est un exemple d’algèbre de Hopf combinatoire commutative-
associative-libre droite selon Loday et Ronco. Ceci implique l’existence d’une structure pré-Lie
sur les primitifs de son dual gradué dont on sait qu’il est isomorphe à l’algèbre enveloppante
de ses primitifs. Il est alors possible de munir H~

D d’une structure de Oudom-Guin. Nous nous
intéressons à la structure pré-Lie des diagrammes de dissection et plus particulièrement à la
sous-algèbre pré-Lie non triviale engendrée par le diagramme de dissection de degré 1. Nous
montrons que cette dernière n’est pas libre. Nous explicitons un morphisme d’algèbres de Hopf
entre celle de Grossman-Larson et H~

D grâce aux structures pré-Lie et aux structures de Oudom-
Guin.

Mots-clés. Algèbres de Hopf combinatoires, diagrammes de dissection, arbres enracinés,
algèbres pré-Lie, algèbres enveloppantes, morphisme, procédé d’insertion.
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Introduction

The Hopf algebra of dissection diagrams comes from number theory and was introduced by
Dupont [8] [9, chapter 2]. He considers the coproduct calculation problem in the fundamental
Hopf algebra of the category of mixed Hodge-Tate structures. Thanks to dissection diagrams,
he aims at computing this coproduct for motivic dissection polylogarithms.

A dissection diagram of degree n is a (n + 1)-gon with a set of n non-intersecting chords
forming a planar rooted tree. Dupont builds a coalgebra structure on the symmetric algebra of
dissection diagrams which makes it into a Hopf algebra denoted by HD. The coproduct is given
with a parameter x selection-quotient process [9, sections 2.1.2 and 2.1.3]. Dupont considers
the case x = −1, defines a decorated version and explains compatibilities between decorations
and chords contraction in an oriented graph [9, section 2.1.4]. The set of decorations must be a
group and in this case, Dupont uses the complex numbers group. For any dissection diagram D
he defines dissection polylogarithms I(D) as an absolutely convergent integral of a differential
form on a simplex [9, definition 2.3.5]. The differential form depends on decorated chords and
the simplex on decorated sides of D [9, section 2.3.2]. He gives then a motivic version IH(D)
[9, section 2.4.1] and computes the coproduct [9, section 2.4.2, theorem 2.4.9].

In this article, we aim at understanding the combinatorics of the Hopf algebra of dissection
diagrams. We first recall the Hopf algebra construction as well as two particular families of
dissection diagrams that generate Hopf subalgebras : the path trees and the corollas. We
express their Hopf algebraic structures as group coordinate algebras. The path trees subalgebra
and the Hopf algebra of symmetric functions are isomorphic. The corollas subalgebra is the
dissection diagrams version of the Faà di Bruno Hopf algebra. We then discuss cofreeness. In
the case of degree three, we give a basis of the vector space of primitive elements although their
dimensions do not permit to reach a conclusion. Computations attest that the Hopf algebra HD
is not cofree with the parameter x = −1. We conclude this first section with calculations of the
antipode.

The second part consists in studying HD by using Hopf algebras of rooted trees. Sending a
dissection diagram to its underlying rooted tree is not a good choice, because it does not respect
the coalgebra structure. Dupont [9, remark 2.1.15] alludes to a pre-Lie structure on dissection
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diagrams. The Hopf algebra H~
D is graded, connected, cocommutative, so is isomorphic to the

enveloping algebra U(gD) of its primitive elements gD. According to Loday and Ronco, HD
is a free-commutative right-sided combinatorial Hopf algebra. This implies that there exists
a pre-Lie structure on gD. In that way, we can use the Oudom-Guin structural theorem [23,
proposition 2.7 - theorem 2.12] about enveloping algebras of pre-Lie algebras. The goal is then
to study the parametrized pre-Lie algebra of dissection diagrams. Indeed, let x be a parameter
in the base field. If the pre-Lie algebra of dissection diagrams associated to x is free then its
enveloping algebra is free too and, by duality, the dissection Hopf algebra of dissection diagrams
HD associated to x is cofree. After a brief recall about pre-Lie algebras and the Grossman-Larson
Hopf algebra, we present the Hopf algebra H~

D and the pre-Lie structure on gD. We describe the
unique morphism of Hopf algebras ϕ respecting the Oudom-Guin structures of HGL and H~

D and

sending the rooted tree t = q of degree 1 to D = . This morphism relies on an insertion

process of chords (propositions 37, 39, 44 and 46). We prove that the pre-Lie algebra generated

by is not free (corollary 34) and is a strict pre-Lie subalgebra of gD (proposition 29).

Consequently the pre-Lie algebra of dissection diagrams is not free and it does not answer the
question of cofreeness. We conjecture the kernel of ϕ to be the Hopf biideal generated by rooted
trees with at least one vertex of valency at least three (conjecture 35). Propositions 41, 48 and
49 are first steps towards a solution to this conjecture.

This article is a shortened version of chapter 3 of my thesis [21, chapitre 3].

1 Hopf algebra of dissection diagrams

1.1 Reminders

We recall some notations and the construction of the Hopf algebra of dissection diagrams. Let
K be a commutative base field of characteristic 0. For any non-negative integer n, we consider
a regular oriented (n+ 1)-gon Πn with a special vertex called the root. We draw Πn as a circle
and put the root at the bottom. An arc between two vertices is a side, while a line between two
distinct vertices is a chord.

Definition 1. A dissection diagram of degree n is a set of n non-intersecting chords of Πn

such that the graph formed by the chords is acyclic. So the n chords form a planar rooted tree
whose root is the root of Πn. For any dissection diagram D, we denote by C (D) the set of its
chords.

Example. We consider the dissection diagram

D = 1

2

3 .

Its sides are colored in blue and its chords are colored in red.

Lemma 2. The number of dissection diagrams of degree n ∈ N is given by

dn = 1
2n+ 1

(
3n
n

)
and satisfies the following recursive relation

∀n ≥ 1, dn =
∑

i1,i2,i3≥0
i1+i2+i3=n−1

di1di2di3 .
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Proof. Let us recall ideas expounded by Dupont [9, lemme 2.1.1] in his proof. For any dissection
diagram D, there exists a unique triple of dissection diagrams (D1, D2, D3) and a unique triple
of integers (i1, i2, i3) such that i1 + i2 + i3 = n−1 and for any j ∈ {1, 2, 3} the dissection diagram
Dj is of degree ij and D is the dissection diagram

D1
D2

D3

.

The black vertex is the first vertex, in the clockwise orientation, connected with the root. So, if
d(h) =

∑
n≥0

dnh
n, then

d(h) = 1 + hd(h)3.

By the Lagrange inversion formula, for any integer n ∈ N, dn is then given by

dn = 1
n
〈(1 + h)3n, hn−1〉 = 1

2n+ 1

(
3n
n

)
,

where 〈(1 + h)3n, hn−1〉 is the coefficient of hn−1 in (1 + h)3n.

The decomposition of dissection diagrams presented in the proof of lemma 2 will be usefull
to prove proposition 41 and proposition 48

Now we denote by D the vector space spanned by dissection diagrams. The formal series d
([25, sequence A001764 ]) recalled in the preceding proof is the Poincaré-Hilbert series of D.

Since a dissection diagram D is clockwise oriented, it is possible to label the sides of Πn.
Furthermore, since the chords of D form a planar rooted tree, it is possible to orient them toward
the root and to label them. If it is necessary, we label the root by 0.

Example.

D = 1

2

3
1

2
3

0

1 2

3

.

It is thus possible to do the following identification

C (D) ' {1, . . . , n} ' S + where S + = {sides of Πn} \ {side 0}.

Since this identification is natural, quite often we do not write any label to lighten the
notation.

Let D be a dissection diagram and C be a subset of C (D). We assume that the cardinality
of C is p. Chords in C give a partition of Πdeg(D) in p + 1 faces. For any face α, SC(α) is the
set of sides of Πdeg(D) which are in the face α. We shall consider the set S +

C (D) = tαS +
C (α)

where S +
C (α) = SC(α) \ {min(SC(α))}.

Definition 3. Consider HD, which is, as vector space, the symmetric algebra generated by
D ( i.e. as vector space HD = S(D)), and define the two maps m and ∆ by:

m :
{
HD ⊗HD −→ HD
D1 ⊗D2 −→ D1D2

and

∆ :

 HD −→ HD ⊗HD
D −→

∑
C⊂C (D)

xkC(D)qC(D)⊗ rC(D)

where
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1. x ∈ K is scalar,

2. qC(D) is the disjoint union obtained by contracting chords in C,

3. rC(D) is the dissection diagram obtained by keeping chords in C and contracting sides of
Πdeg(D) which are in the set S +

C (D),

4. kC(D) is the number of changes of direction we need to properly orient chords of rC(D).

Dupont proves in [9, proposition 2.1.11] the following proposition.

Proposition 4. 1. The map ∆ is a coassociative coproduct.

2. The quintuple (HD,m, 1HD ,∆, ε), where 1HD is the unit of HD and ε its counit, is a Hopf
algebra.

Example. For example we have the following coproduct:

∆
(

1

2

3

)
= ⊗ 1 +

(
x + +

)
⊗

+ ⊗
(

+ (1 + x)
)

+ 1⊗ .

1.2 Path trees and corollas: two Hopf subalgebras of HD

Dupont [9, examples 2.1.14] emphasises two special families: the path trees and the corollas. In
fact, they form two Hopf subalgebras which are isomorphic to group coordinate Hopf algebras.
We recall these families and explain the isomorphisms.

1.2.1 Path trees and symmetric functions

Let n be a positive integer. The path tree of degree n is the dissection diagram Yn of degree n
such that for any i ∈ J1, n− 1K, chord i goes from vertex i to vertex i+ 1 and chord n connects
vertex n to the root. The path tree of degree 0 is the empty dissection diagram i.e. Y0 = 1.

Examples. Path trees of degree 1 to 4:

Y1 =

1

, Y2 =
1 2

, Y3 = 1

2

3 , Y4 =
1

2 3

4
.

For any non-negative integer n we have

∆(Yn) =
n∑
k=0

(
n

k

)
Yk ⊗ Yn−k.

Trivially, the vector space generated by disjoint unions of path trees is a Hopf subalgebra of
HD here denoted by EY . Dupont [9, examples 2.1.14, 1] remarks that the EY coproduct is
reminiscent of the one on symmetric functions. We give an isomorphism between both.

Let G0 = 〈1 +
∞∑
n=1

qnh
n ∈ K[[h]]〉 be the multiplicative group of formal series with constant

term equal to 1. For any positive integer n we call n-th coordinate map the map Σn defined by
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Σn :


K[[h]] −→ K

Q = 1 +
∞∑
n=1

qnh
n −→ qn.

We consider the Hopf algebra Sym = K[Σ1, . . . ,Σn, . . . ]

with its usual product and the coproduct given by: for any map f ∈ Sym, for any elements P
and Q of G0, ∆G0(f)(P ⊗Q) = f(PQ).

Proposition 5. The Hopf algebras EY and Sym are isomorphic.

Proof. It is sufficient to consider the following Hopf algebra morphism

ω1 :
{
Sym −→ EY

Σn −→ 1
n!Yn.

Remark. Actually, the morphism defined in the proof above comes from the one used by
Doubilet, Rota and Stanley to prove that the reduced incidence algebra of the poset of path
trees and the algebra of exponential power series [7, Example 4.6].

1.2.2 Corollas and the Faà di Bruno Hopf algebra

The second special family emphasized by Dupont is that of the corollas. For any positive integer
n, the corolla of degree n is the dissection diagram such that for any i ∈ J1, nK the chord i goes
from vertex i to the root. The corolla of degree 0 is the empty dissection diagram i.e. X0 = 1.

Examples. Non-empty corollas of degree n less than or equal to 4:

X1 =

1

, X2 =
1 2

, X3 = 1

2

3 , X4 =
1

2 3

4
.

For any non-negative integer n, we have:

∆(Xn) =
n∑
k=0

( ∑
i0+···+ik=n−k

ij≥0

Xi0 . . . Xik

)
⊗Xk.

Trivially, the vector space spanned by disjoint union of corollas is a Hopf subalgebra of HD that
we denote by CX .

Let us now recall the Faà di Bruno Hopf algebra construction. Let us consider the set

G1 = 〈h +
∞∑
n=1

qnh
n+1 ∈ K[[h]]〉. Endowed with the natural formal series composition ◦, it is

the group of formal diffeomorphisms tangent to identity. For any positive integer n we still call

n-th coordinate map the linear map Σn defined by Σn :


K[[h]] −→ K

Q = h+
∞∑
n=1

qnh
n+1 −→ qn.

We

consider the Hopf algebra HFdB = K[Σ1, . . . ,Σn, . . . ] with its usual product and the coproduct
given asd follow: for any map f ∈ HFdB and elements P and Q of G1, ∆G1(f)(P⊗Q) = f(Q◦P ).
It is the Faà di Bruno Hopf algebra.

Proposition 6. The Hopf algebras CX and HFdB are isomorphic.

Proof. It is sufficient to consider the morphism

ω2 :
{
HFdB −→ CX

Σn −→ Xn.
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1.3 Primitive elements of degree less than or equal to 3

We want to study the underlying coalgebra of HD to determine whether it is cofree or not. We
start by giving for any parameter x ∈ K a basis of the vector space Prim(HD)2 (respectively
Prim(HD)3) spanned by degree 2 (respectively degree 3) primitive elements. Unfortunately,
these two cases are not sufficient to decide whether HD is cofree or not.

Let FHD be the Poincaré-Hilbert formal series ofHD. By definition, FHD(h) =
∞∏
n=1

1
(1− hn)dn ,

where dn is the number of dissection diagrams of degree n for any non-negative integer. If HD

is cofree, we have FPrim(HD) = 1− 1
FHD

i.e.

FPrim(HD)(h) = h+ 3h2 + 9h3 + 40h4 + 185h5 + . . . (1)

A basis of Prim(HD)2 is given by the following triple (V1, V2, V3) of independent vectors
where

V1 =(1 + x) − 2 ,

V2 = − ,

V3 = − .

Definition 7. We define the map κ by

κ :
{
HD ⊗HD −→ HD ⊗HD
U1 ⊗ U2 −→ U2 ⊗ U1

The morphism κ ◦∆ is denoted by ∆op.

For the third degree case, we add the following notations.

Definition 8. Let U be in HD.

1. We denote by l(U) its projection over D+, by q(U) its projection over (D+)2, by t(U) its
projection over (D+)3 and by r(U) the sum U − l(U)− q(U)− t(U).

2. We call linear part of ∆(U) the projection of ∆(U) over D+ ⊗D+ denoted by δ(U).

3. The opposite linear part of ∆(U) is the linear part of ∆op(U) denoted by δop(U).

4. We call quadratic part of ∆(U) the projection of ∆(U) over (D+)2⊗D+ denoted by Q(U).

5. The opposite quadratic part of ∆(U) is the quadratic part of ∆op(U) denoted by Qop(U).

Lemma 9. Let p be a primitive element of degree 3. It can be written as p = l(p)+q(p)+t(p)
and we have:

m ◦ δ(l(p)) =− 2q(p),
Q(l(p)) =0,

t(p) =k
1 1 1

where k ∈ K,

m ◦ Q(t(p)) =− 3t(p).
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Proof. Let p be a primitive element of degree 3. By commutativity, we have m ◦ δ(l(p)) =
−2q(p). By definition of t(p) and since p is of degree 3, there exists a scalar k ∈ K such

that t(p) = k

1 1 1

. Similarly, there exists scalars k1, k2 and k3 in K such that

q(p) = k1
1 2

1

+ k2
1 2

1

+ k3
1 2

1

. So Q(t(p)) = Qop(t(p)) and

Q(q(p)) = Qop(q(p)). This finally gives Q(l(p)) = 0.

Lemma 10. Let p be a primitive element of degree 3. The part l(p) is a linear combination
of the independent vectors U1, . . . , U9 where

U1 = − x + x , U2 = − x2 + x ,

U3 = − , U4 = − ,

U5 = − (1 + x) + , U6 = − ,

U7 = − , U8 = , U9 = .

Proposition 11. A basis of Prim(HD)3 is given by the vector family {V1, . . . , V9} where

V1 = − x + x − (1 + x) − (1 + x2)

+x + (x2 + 1) ,

V2 = − x2 + x − (1 + x)2 + x(x− 1)

+x2 + x3 − x2 + 5x+ 1
3 ,

V3 = − − − (x− 2) + (x− 1) ,

V4 = − − + − (x− 1)

+(x− 1) ,

V5 = − (1 + x) + − 2 + 2(1 + x)

−(1 + x) ,

V6 = − ,
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V7 = − + − + (x− 1)

−(x− 1) ,

V8 = − 2 − + 2 ,

V9 = − 3 + 2 .

The bases given before are compatible with formula (1). We use the computation program
in [21, Appendix B.3 ] to determine the dimension of primitives elements of low degree for some
parametrized Hopf algebras HD. With those computations it is possible to explain that HD is
not cofree if x = −1. Indeed, in degree 5, if x = −1, the primitive space dimension equals 187
which is different from 185 the dimension compatible with cofreeness. If x ∈ J−104, 104K the
dimensions of the primitive spaces of degree d ∈ J1, 4K are compatible with cofreeness. In degree
5, because of a long computation time, we only calculated the dimension of the vector space for
x ∈ J−100, 100K. Except for x = −1, all dimensions turn to be equal to 185.

Conjecture 12. If x = 1 or x is not a root of unity, the Hopf algebra HD is cofree.

1.4 The antipode calculation

We want to give a formula for the antipode. We first have to understand iterated coproducts
i.e. morphisms ∆k = (∆⊗ Id⊗ . . .⊗ Id︸ ︷︷ ︸

k−1 times

) ◦ · · · ◦ (∆⊗ Id) ◦∆ where k is a positive integer. Let

D be a dissection diagram and let C be a subset of C (D). By contracting C, we change labels
in qC(D) and rC(D). As we build iterated coproducts by applying the coproduct on the left, we
need to modify the labels of the chords of qC(D). It is sufficient to label the chords of qC(D)
with the labels they had in D before the contraction. In the sequel we keep the same notation
for qC(D) and for the element qC(D) with modified labels.

Proposition 13. Let n be a positive integer and D be a dissection diagram of degree n. The
value of the antipode S evaluated at D is given by:

S(D) =
n∑
s=1

(−1)s
∑

P∈ΠD(s)
xkP (D)

s∏
i=1

rCi(qPi−1(D))

where

ΠD(s) is the set of s-tuples (C1, . . . , Cs) of non-empty sets which are a partition of C (D),

P0 = ∅ for any P in ΠD(s),

Pi =
i⋃

u=1
Cu for any P in ΠD(s) and each integer i in J1, sK,

kP (D) = kC1(qP0(D)) + · · ·+ kCs(qPs−1(D)).

If, for any non-negative integer p, we denote by Xp (respectively by Yp) the corolla (respec-
tively the path tree) of degree n, we have in particular:

S(Xn) =
n∑
k=1

(−1)k
∑

(α1,...,αk)|=n

∑
ij,0+···+ij,pj=αj
pj=αj+1+···+αk
j∈{1,...,k−1}
∀m, iu,m≥0

Xαk

k−1∏
j=1

Xij,0 . . . Xij,pj
,
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S(Yn) =
n∑
k=1

(−1)k
∑

α=(α1,...,αk)|=n

n!
α1! . . . αk!

Yα1 . . . Yαk

Proof. Let n be a positive integer and D be a dissection diagram of degree n. For any integer s
in J1, n− 1K we define

Π̃D(s) = {(C1, . . . , Cs+1) ∈ C (D)s+1, (C1, . . . , Cs) ∈ ΠD(s) or (C1, . . . , Cs+1) ∈ ΠD(s+ 1)}.

We use the fact that the antipode reverses the identity map for the convolution product and on
each step we use the renumbering process described earlier. Using a reasoning by induction this
gives:

S(D) =−
∑

C1⊂C (D)
C1 6=∅

xkC1 (D)S(qC1(D))rC1(D)

=
∑

C1⊂C (D)
C1 6=∅

xkC1 (D) ∑
C2⊂C (D)\C1

C2 6=∅

xkC2 (qC1 (D))S(qC1∪C2(D))rC2(qC1(D))rC1(D)

=(−1)u
∑

P∈Π̃D(u)

xkP (D)S(qPu(D))
u∏
i=1

rCi(qPi−1(D))

=
n∑
s=1

(−1)s
∑

P∈ΠD(s)
xkP (D)

s∏
i=1

rCi(qPi−1(D)).

Examples.

S

( )
=− + (1 + x) + 2 +

− (2x+ 3) ,

S

( )
=− + 5 − 5 .

Remark. Considering the Faà di Bruno Hopf algebra as the Hopf algebra of coordinates
of the group of formal diffeomorphims G1, for any positive integer n, the antipode S computes
in the coordinate map Σn is given by:

∀P ∈ G1, S(Σn)(P ) = Σn(P−1)

where P−1 is the inverse of P for the formal series composition [13, section 4.3].

2 Dissection diagrams, rooted trees, theorem of Oudom-Guin
The aim of this section is to connect dissection diagrams and rooted trees. For instance, we grade
rooted trees by the number of edges and associates to a disjoint union of dissection diagrams the
disjoint union of underlying planar rooted trees. Unfortunately, this procedure does not respect
the coalgebra structure.

Dupont alludes to a pre-Lie structure over the primitive elements gD of H~
D [9, remark

2.1.15]. We therefore consider H~
D the enveloping algebra of the pre-Lie algebra gD and apply

10



the structural theorem of Oudom-Guin [23, proposition 2.7 - theorem 2.12]. This allows us to
build the unique pre-Lie morphism γ from the free pre-Lie algebra gTR generated by t = q to gD
sending t to the dissection diagram of degree 1. From this we deduce that the pre-Lie algebra
generated by the dissection diagram of degree 1 is not free and does not generate the whole
pre-Lie algebra gD. We extend γ to a morphism of Hopf algebras and give a conjecture about
its kernel.

2.1 Pre-Lie algebras and theorem of Oudom-Guin

Pre-Lie algebras (also called Vinberg algebras) were introduced in 1963 by Vinberg [27] in the
theory of homogeneous convex cones and by Gerstenhaber [14, section 2] in deformation theory.
The PreLie operad defining pre-Lie algebras was introduced and described by Chapoton and
Livernet [5, theorem 1.9]. They also describe the free pre-Lie algebra generated by one or
several generators in terms of rooted trees [5, corollaire 1.10]. It is another way to prove the
isomorphism between the dual of the Connes and Kreimer Hopf algebra [6] and the Grossman-
Larson Hopf algebra [15]. Foissy proves that the free pre-Lie algebra with one generator is
free as a Lie algebra [11, theorem 8.4]. Using operad theory, Chapoton extended this result
for any free pre-Lie algebra [4, corollary 5.3]. He proves that the operad PreLie is anticyclic
[3]. Livernet [19, theorem 3.4] determines the freedom of “Hopf pre-Lie algebras” equipped the
relation ∆(x . y) = ∆(x) . y + x ⊗ y = x(1) . y ⊗ x(2) + x(1) ⊗ x(2) . y + x ⊗ y. Oudom and
Guin [23, proposition 2.7 - theorem 2.12] build for any pre-Lie algebra g a Hopf algebra which
is isomorphic to U(g). It is a generalization of the construction of the enveloping algebra of
the free pre-Lie algebra of rooted trees generated by t = q (Grossman-Larson Hopf algebra).
Loday and Ronco [20, theorems 5.3 and 5.8] explain that there exists a pre-Lie structure for
free-commutative right-sided combinatorial Hopf algebras. It is possible to equip an operad
with a pre-Lie structure. Burgunder, Delcroix-Oger and Manchon [2, theorem 3.1] attest that
an operad cannot be free as a pre-Lie algebra.

New structures can be defined too. Mansuy builds the quadratic operad Com−PreLie and
gives as an example the algebra of rooted trees equipped with the grafting product and the
grafting product on the root [22, section 4.2]. Foissy [12, definition 17 and theorem 20] describes
the free Com-PreLie algebra with one generator as the partitioned trees algebra equipped with
the disjoint union product and with the grafting product. Another structure of interest is
the quadratic operad PostLie introduced by Vallette [26, section A.2]. A post-Lie algebra A is
equipped with a binary map . and with a Lie bracket {−,−} which are compatible. If (A, {−,−})
is abelian then (A, .) is a pre-Lie algebra. The post-Lie algebra notion is a generalization of the
pre-Lie algebra notion. A general survey about the origins and applications of pre-Lie algebras
can be found in [1].

Definition 14. A left pre-Lie algebra is a couple (g, .) where g is a vector space and . :
g ⊗ g −→ g is an internal product with the following relation: for any x, y, z ∈ g,

x . (y . z)− (x . y) . z = y . (x . z)− (y . x) . z.

Example. We consider the classical example of g = {P (X)∂, P (X) ∈ K[X]}, the deriva-
tion algebra of K[X], where ∂ is the derivation sending X to 1. We define the product . by

. :
{

g ⊗ g −→ g
P (X)∂ ⊗Q(X)∂ −→ (P (X)∂Q(X))∂.

The product of two derivations P (X)∂ and Q(X)∂ is not the usual composition of maps (g
is not stable under this product) but is the unique derivation sending X to P (X)Q′(X). Let
P (X), Q(X) and R(X) be polynomials. We have

P (X)∂ . (Q(X)∂ . R(X)∂)− (P (X)∂ . Q(X)∂) . R(X)∂ = P (X)Q(X)∂2R(X)∂.

11



This relation is symmetric over P (X) and Q(X) so the pre-Lie relation is satisfied.
By symmetrization, a pre-Lie algebra is a Lie algebra.

Proposition 15. Let (g, .) be a pre-Lie algebra. We define the bracket {−,−} by:

{−,−} :
{

g ⊗ g −→ g
x⊗ y −→ x . y − y . x.

With this bracket, g is a Lie algebra denoted by gLie.

Definition 16. Let (g, .) be a pre-Lie algebra. Consider the Hopf symmetric algebra S(g)
equipped with its usual coproduct ∆. The product . can be extended to S(g). Let a, b, c and x
be elements such that a, b, c ∈ S(g) and x ∈ g. One defines

1 . a = a,
a . 1 = ε(a)1,

(xa) . b = x . (a . b)− (x . a) . b,
a . (bc) =

∑
a

(a(1) . b)(a(2) . c).

On S(g), we define a product ? by:

?

{
S(g)⊗ S(g) −→ S(g)

a⊗ b −→ a ? b =
∑
a
a(1)(a(2) . b).

The following theorem was proved by Oudom and Guin in [23, proposition 2.7 - theorem
2.12].

Theorem 17. The space (S(g), ?,∆) is a Hopf algebra which is isomorphic to the enveloping
Hopf algebra U(gLie) of the Lie algebra gLie generated by primitive elements.

2.2 Hopf algebras of rooted trees

2.2.1 Hopf algebra HGL of Grossman-Larson rooted trees

The Grossman-Larson Hopf algebra, written HGL, was introduced in [15] as a tool in the theory
of differential operators [16, 17]. It is graded, connected, cocommutative and not commutative.
By the Cartier-Quillen-Milnor-Moore theorem, it is isomorphic to the enveloping algebra of its
primitive elements. Panaite [24] proves that there exists a connection between HGL and the
graded dual H~

CK of the Connes and Kreimer Hopf algebra [6]. Hoffman clarifies this connection
[18]. The two Hopf algebras are not equal but isomorphic in characteristic 0. In H~

CK, because of
grafts, there are symmetry coefficients which do not appear in HGL. Chapoton and Livernet [5,
corollary 1.10] prove that the pre-Lie algebra of rooted trees in Grossman-Larson Hopf algebra
is free and give another proof of the isomorphism between HGL and H~

CK. Oudom and Guin
[23, proposition 2.7 - theorem 2.12] use the case of HGL as model to prove a structural theorem
for the enveloping algebra of a pre-Lie algebra.

We recall the definition of HGL with the point of view of Oudom and Guin. Let gTR be the
vector space gTR = Vect(t, t ∈ TR).

Definition 18. On gTR we define the following product:

. :

 gTR ⊗ gTR −→ gTR

t1 ⊗ t2 −→
∑

s∈V (t2)
τt1,t2,s

where τt1,t2,s is the rooted tree obtained by grafting t1 on the vertex s of t2.

The following theorem was proved by Chapoton and Livernet in [5, corollary 1.10].

Theorem 19. The algebra (gTR , .) is the free left pre-Lie algebra generated by the rooted
tree of degree 1 ( i.e. t = q).

12



Examples.

qq . qqq = q∨qq qq + q∨qq qq + qqqqq , qqq . qq = q∨qqq
q

+ qqqqq .
Proposition 20. On S(gTR), the product ?, built with the pre-Lie structure and the theorem

of Oudom-Guin, is given by:

? :


HGL ⊗HGL −→ HGL

t1 . . . tn ⊗ tn+1 . . . tn+m −→
∑

σ:I⊆J1,nK−→V (tn+1...tn+m)
(t1 . . . tn, tn+1 . . . tn+m, σ)

where

V (tn+1 . . . tn+m) is the set of the vertices of the forest tn+1 . . . tn+m,

(t1 . . . tn, tn+1 . . . tn+m, σ) is the rooted forest obtained by grafting the tree ti on the vertex
σ(i) for any i in I.

Examples.

q∨qq ? qq = q∨qq∨qq + qqq∨
q q

+ q∨qq qq ,
q q ? qq =2 q∨qq q + 2 q qqq + q∨qq q + q∨qq q + 2 q∨qq q + q q qq ,qq ? q q =2 q qqq + q q qq .

2.2.2 Quotient Hopf algebra of sub-binary trees

Definition 21. 1. A rooted tree t is a sub-binary tree if all its vertices have a valency
less than or equal to 3. The set of rooted sub-binary trees is denoted by T SB.

2. A rooted forest F is sub-binary if all of its trees are sub-binary trees. We denote the set of
rooted sub-binary forests by FSB.

By direct checking we obtain the following proposition.

Proposition 22. We consider the vector space I = Vect(F, F ∈ FR \ FSB). It is a Hopf
biideal of HGL.

Proposition 23. The vector space SBT = Vect(F, F ∈ FSB) is a quotient Hopf algebra of
HGL.

Proof. It is sufficient to consider the canonical surjection

ΠSBT :


HGL −→ SBT

F ∈ FR −→
{
F if F ∈ FSB,

0 else.

The biideal I is the kernel of ΠSBT.

Remark. By duality, we can consider SBT~ as a Hopf subalgebra of the Connes and
Kreimer Hopf algebra.
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2.3 Dual of the dissection diagrams Hopf algebra

As the Hopf algebra HD is graded and connected with finite-dimensional homogeneous com-
ponents, its graded dual H~

D is a graded connected with finite-dimensional homogeneous com-
ponents Hopf algebra. We now study this structure. Up until corollary 26, we use the same
approach as in [10, chapter 7, section 7.3].

Thanks to the Cartier-Quillen-Milnor-Moore theorem we have the following proposition.

Proposition 24. The Hopf algebra H~
D is isomorphic to the enveloping algebra U(gD) where

gD is the Lie algebra Prim(H~
D) of the primitive elements of H~

D.

We denote by (ZFD)FD∈HD the dual basis of disjoint union of dissection diagrams. We know
that generators of the Lie algebra Prim(H~

D) are gD = ((1) + Ker(ε)2)⊥, so a basis of gD is
given by (ZD)D∈D. In order to describe operations of the Hopf algebra H~

D, it is sufficient to
define the product on ZD, with D a dissection diagram. Each dissection diagram D is primitive.
Concerning the product, we have the following proposition:

Proposition 25. Let D1 and D2 be two nonempty dissection diagrams of respective degree
n1 and n2 and x a scalar. the product of ZD1 and ZD2 in this order is given by:

ZD1ZD2 = (1 + δD1,D2)ZD1D2 +
∑
D∈D

c(D1, D2;D)ZD

where for any dissection diagram D, the coefficient c(D1, D2;D) is a polynomial QD in x de-
pending on D. We have:

QD(x) = (ZD1 ⊗ ZD2) ◦∆(D).

Example.

Z Z =2Z + 2Z + 2Z + (1 + x)Z .

Corollary 26. The Lie algebra gD is the vector space gD = Prim(H~
D) equipped with the

bracket [−,−] defined, for any dissection diagrams D1 and D2, by:

[ZD1 , ZD2 ] =
∑
D∈D

(
c(D1, D2;D)− c(D2, D1;D)

)
ZD.

Example.[
Z ,Z

]
=− Z − Z − Z − Z

+Z + xZ + x2Z .

Now we aim at defining a Hopf algebra isomorphic to H~
D by providing it with a structure

of Oudom-Guin. We then create a morphism between HGL and H~
D using pre-Lie structures.

Proposition 27. The vector space gD = Prim(gD), equipped with . defined by:

. :

 gD ⊗ gD −→ gD
ZD1 ⊗ ZD2 −→

∑
D∈D

c(D1, D2;D)ZD,

is a left pre-Lie algebra.
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Proof. Let us first recall the notion of free-commutative right-sided combinatorial Hopf algebra
introduced by Loday and Ronco in [20, definitions 3.16, 4.1, 4.16 and 5.7]. A free-commutative
right-sided combinatorial Hopf algebra H is an associative commutative free Hopf algebra
(H,m,∆) generated by Gen(H) and such that, for h ∈ Gen(H), we have ∆(h) =

∑
h
h(1) ⊗ h(2)

with h(2) ∈ Gen(H). The Hopf algebra HD is a free-commutative right-sided combinatorial Hopf
algebra. According to Loday and Ronco [20, theorems 5.3 and 5.8], the couple (gD, .) is a left
pre-Lie algebra.

Proposition 28. We consider the Hopf algebra S = (S(gD), ?,∆) where S(gD) is the sym-
metric algebra of dissection diagrams, the coproduct ∆ is the usual coproduct of S(gD) and the
product ? is induced by the pre-Lie product . defined on gD and definition 16. The Hopf algebras
S and H~

D are isomorphic.

Proof. It is a direct application of theorem 17 and proposition 24. We now identify H~
D with

the Hopf algebra obtained by the theorem of Oudom-Guin.

Lemma 29. The pre-Lie subalgebra generated by the dissection diagram is a non

trivial pre-Lie subalgebra of gD.

Proof. The underlying vector subspace of elements of degree 2 of the pre-Lie algebra generated

by is generated by

. = 2 + 2 + (1 + x) .

And yet, the underlying vector space of elements of degree 2 of gD is generated by the three
dissection diagrams of degree 2. As a consequence the pre-Lie subalgebra generated by the

dissection diagram is a non trivial pre-Lie subalgebra of gD.

3 Definition of a Hopf algebra morphism from HGL to H~
D

We want to describe a Hopf algebra morphism between the Grossman-Larson rooted forests
Hopf algebra and the graded dual of the Hopf algebra of dissection diagrams. Therefore we use
the underlying pre-Lie structure of the two algebras, the Hopf algebra structure and a chords
insertion process. To lighten the notation for any disjoint union U , the element ZU of H~

D is
denoted by U .

Remark. If f : HGL −→ H~
D is a graded Hopf morphism homogeneous of degree k ≥ 0

then it is not surjective. Indeed, for any positive integers different from 1 there are less rooted
forests of degree n than dissection diagrams of degree n. Let n be a positive integer. We denote
by Cn the n-th Catalan number. There exists at most Cn rooted forests of degree n. We denote
by dn the number of dissection diagrams of degree n. Then, C1 = d1 and, if n is greater than 2
then we have:

dn
Cn

=
(n+ 1)

(
3n
n

)

(2n+ 1)
(

2n
n

) = (3n)!(n+ 1)!
(2n+ 1)!(2n)! = (2n+ 2) . . . (3n)

(n+ 2) . . . (2n) .
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Definition 30. We call γ the following pre-Lie morphism:

γ :


gTR −→ gDq −→

Now we just have to extend this pre-Lie morphism γ as a Hopf algebra morphism. Let us
first recall the definition of the grafting operator.

Definition 31. The grafting operator, denoted by B, is given by:

B :
{

K[TR] −→ gTR

t1, . . . , tn ∈ TR −→ the rooted tree obtained by grafting t1, . . . , tn on a common root.

Example. B(t1, t2) = q qq∨ t2t1 = q qq∨ t1t2 = B(t2, t1).

Proposition 32. The unique extension ϕ of γ, built with the Oudom-Guin structure of HGL,
is defined by:

ϕ :


HGL −→ H~

D
t1 . . . tn −→ ϕ(t1) . . . ϕ(tn)

t −→ L(ϕ(t1) . . . ϕ(tk))

where t1 . . . tk is the rooted forest such that t = B(t1 . . . tk) and L is the following linear map:

L :


HD −→ D

D1 . . . Dn −→ D1 . . . Dn . .

Proof. Let t1t2 be a rooted forest of 2 rooted trees. We have t1t2 = t1 ∗ t2 − t1 . t2 so, ϕ(t1t2) =
ϕ(t1)ϕ(t2). We now assume that there exists a positive integer n ≥ 2 such that for any rooted
forest t1 . . . tn of n rooted trees we have ϕ(t1 . . . tn) = ϕ(t1) . . . ϕ(tn). Let t1 . . . tn+1 be a rooted
forest of n+ 1 rooted trees. We have:

t1 . . . tn+1 =t1 ∗ t2 . . . tn+1 − (t1 . t2)t3 . . . tn+1 − t2 . . . tn(t1 . tn+1)

−
n−1∑
i=2

t2 . . . ti(t1 . ti+1)ti+2 . . . tn+1

Then, by using the fact that ϕ respects the Oudom-Guin structure and the induction hy-
pothesis, ϕ(t1 . . . tn+1) = ϕ(t1) . . . ϕ(tn+1).

Let t be a rooted tree of degree at least 2. There exists a unique positive integer k and
a k-tuple (t1, . . . , tk) such that t = B(t1, . . . , tk). Oudom and Guin observe that the grafting
operator B corresponds to the extended pre-Lie product of a rooted forest on the tree of degree
1. It follows that t = B(t1, . . . , tk) = t1 . . . tk . q and ϕ(t) = L(ϕ(t1) . . . ϕ(tk)).

Corollary 33. Let t be a rooted tree. If t has at least one vertex of valency strictly greater
than three, then γ(t) = 0 so ϕ is not an injective morphism.

Proof. It is sufficient to prove the statement:

∀n ∈ N∗ \ {1, 2}, ∀(D1, . . . , Dn) ∈ (D+)n, D1 . . . Dn . = 0.

We prove the result by induction. Let U and V be two dissection diagrams. We recall that Id
is the identity morphism and l is the projection on D+. By definition,

L(UV ) =UV . = U .

(
V .

)
− (U . V ) .
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=
∑
G∈D

G diagram

(
(ZU ⊗ ZV ⊗ Z ) ◦ (Id⊗∆) ◦∆

)
(G)G

−
∑
G∈D

G diagram

(
(ZU ⊗ ZV ⊗ Z ) ◦ (∆⊗ Id) ◦ (l ⊗ Id) ◦∆

)
(G)G

=



∑
G∈D

G diagram

(
ZUV ⊗ Z

)(
∆(G)

)
G if U 6= V,

2
∑
G∈D

G diagram

(
ZUV ⊗ Z

)(
∆(G)

)
G else.

Let D1, D2 and D3 be three dissection diagrams. We have:

D1D2D3 . = D1 .

(
D2D3 .

)
− (D1 . D2)D3 . −D2 (D1 . D3) . .

By the previous calculation, D1D2D3 . = 0.

We now assume that there exists a positive integer n greater than or equal to 3 such that

for any n-tuple (D1, . . . , Dn) of dissection diagrams D1 . . . Dn . = 0. Let D1, . . . , Dn+1

be n+ 1 dissection diagrams. We have:

D1 . . . Dn+1 . =D1 .

(
D2 . . . Dn+1 .

)
−
(
D1 . D2 . . . Dn+1

)
.

=D1 .

(
D2 . . . Dn+1 .

)
− (D1 . D2)D3 . . . Dn+1 .

−
n−1∑
i=2

D2 . . . Di (D1 . Di+1)Di+2 . . . Dn+1 .

−D2 . . . Dn (D1 . Dn+1) .

=0

Corollary 34. The pre-Lie algebra generated by is not free, the pre-Lie algebra gD

is not free either.

Proof. The first result is a direct consequence of corollary 33. For the second one we assume
gD is free as a pre-Lie algebra. Let V be the vector space such that gD is the pre-Lie algebra
freely generated by V . Let B be a basis of V . By Chapoton and Livernet [5, corollary 1.10] gD
is isomorphic to the pre-Lie algebra of rooted trees decorated by B with the grafting product.
Since there is just one dissection diagram of degre 1, it is an element of B. As a consequence, the

pre-Lie algebra generated by is isomorphic to the pre-Lie algebra of undecorated rooted

trees with the grafting product and so it is a free pre-Lie algebra, which is impossible.
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Conjecture 35. We call N the vector space defined by:

N = Vect(F ∈ FR, ∃s ∈ V (F ), val(s) ≥ 4)

i.e. the vector space generated by the non sub-binary forests. Then, N is the kernel of the Hopf
algebra morphism ϕ.

We now consider, as starting space, the quotient Hopf algebra SBT of sub-binary rooted
trees. We keep the same notation ϕ for this new morphism. We have:

ϕ :


SBT −→ H~

D
B(t) ∈ T SB −→ L(ϕ(t)),

B(t1t2) ∈ T SB −→ L(ϕ(t1)ϕ(t2)),
t1 . . . tn ∈ FSB −→ ϕ(t1) . . . ϕ(tn),

where L is the following linear map:

L :



D+ ⊗K⊕D+ ⊗D+ −→ D+

D ⊗ 1 −→ D . ,

D1 ⊗D2 −→ D1D2 . .

Examples. We consider the rooted tree t = qq . We know that t = B( q) so we have:

ϕ(t) = L

( )
= 2 + 2 + (1 + x) .

For the rooted tree t = q∨qq = B( q q) we have:

ϕ(t) =L
( )

=2 + 2x + 2 + 2

+2 + 2x + 2 + 2 .

By construction, we have:

Lemma 36. Let t be a sub-binary rooted tree of positive degree n. Its image ϕ(t) is homo-
geneous of degree n.

We now aim at determining L(D) and L(D1D2) for any dissection diagrams D, D1 and D2.
To this end we formalize the dissection diagram construction by an insertion process of a chord
in one or two dissection diagrams. Let D be a dissection diagram of degree n ≥ 1 and i an
integer in the interval J0, nK.

• The integer i is the vertex i (or the root, if i = 0). If it is necessary for understanding
then the vertex i is denoted by SD,i.

• We call valency of the vertex i the number vD(i) of chords of D attached to the vertex i.

• The set of the chords of D containing the vertex i in common, counterclockwise labeled,
is defined by: AD,i = {aiD,1, . . . , aiD,vD(i)}.

18



• Let u < v be integers between 0 and n. We denote by {u, v} a chord connecting the
vertices u and v. As the dissection diagram has a natural orientation we do not recall the
orientation of the chord {u, v} in its notation.

• We consider an integer t ∈ J0, vD(i)K. We define two subsets of chords: At,1D,i = {aiD,1, . . . , aiD,t}
and At,2D,i = {aiD,t+1, . . . , a

i
D,vD(i)}.

If there is no ambiguity on the considered dissection diagram, we do not write its name in no-
tations.

Examples. We illutrate the way of labeling chords with a common vertex. In the first
example below, we consider a vertex different from the root and color it in red. In the second
one, we consider the root and we color it in yellow. In the two cases, chords with the considered
common vertex are colored in red. To relieve the notations, the sth chords from the vertex i is
written s instead of aiD,s.

1

2

3

4

5

6

7

8

9

1

2

3
4 ,

1

2

3

4

5

6

7

8

9
1

2

3

.

3.1 Insertion of a chord in a vertex of a dissection diagram D

We consider D a dissection diagram of degree n ≥ 1. We want to insert a new chord in D.
Therefore we start by choosing a vertex i in D, we split i in two vertices s1 and s2 and we split
the chords of D connected to i. The new object is not a dissection diagram. It is sufficient
to build the chord between s1 and s2 to obtain again a dissection diagram. Following this
procedure, we can build all dissection diagrams G of degree n+ 1 with at least one chord a such
that q{a}(G) = D.

3.1.1 The chosen vertex of D is different from the root.

We choose a vertex of D different from its root, so we just consider a positive integer i in J1, nK.
Let t ∈ J0, f(i)K be a integer, used to split the chord of D with the common vertex i. We define
the following map:

φi,t :



C (D) −→ {{u, v}, 0 ≤ u < v ≤ n+ 1}

{u, v} −→



{u, v} if (u ≤ i− 1 and v ≤ i− 1)
or (u ≤ i− 1, v = i and {u, v} ∈ At,1i ),

{u, v + 1} if (u ≤ i− 1, v = i and {u, v} ∈ At,2i )
or (u = i and {u, v} ∈ At,1i ),

{u+ 1, v + 1} if (u = i and {u, v} ∈ At,2i ) or u ≥ i+ 1.

With this map, we consider a diagram G̃D,i,t of degree n+ 1 which is open between the vertices
i and i+ 1 with C (G̃D,i,t) = φi,t(C (D)). This new diagram is not a dissection diagram, but an
intermediate object in the definition of the insertion process.
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Examples. We consider some dissection diagrams D and give their diagram G̃D,i,t. The
vertex i to split is colored in red, the chords of D in At,1D,i are colored in blue and the chords in
At,2D,i are colored in green.

1. For D =

1

2

3

4
5

6

7

8

9

, we have: G̃D,2,1 =

1

2

3

4

5 6

7

8

9

10

.

2. For D =

1

2

3

4

5

6

7

, we have: G̃D,7,3 =

1

2

3

4 5

6

7

8

.

It is then possible to define an insertion endomorphism homogeneous of degree 1 of the vector
space of dissection diagrams. We consider a positive integer i (choice of the vertex to make the
insertion) and a non-negative integer t (partition of the chord with the vertex i in common).
We define the map Γi,t by:

Φi,t :


(D)n −→ (D)n+1

D −→
{
GD,i,t with C (GD,i,t) = φi,t(C (D)) ∪ {i, i+ 1} if i ≤ n and t ≤ vD(i),
0 else.

Remarks. Let D be a dissection diagram, i be a vertex and t be an integer in J0, vD(i)K.

1. We easily know the orientation of the chord {i, i + 1} in GD,i,t = Φi,t(D). Indeed, there
exists a unique integer l(i) such that the chord labeled by i is the element aiD,l(i) of AD,i.
If t ≤ l(i)− 1 then {i, i+ 1} is labeled by i else {i, i+ 1} is labeled by i+ 1.

2. The sum of maps Φi,t is called operation 1.

Examples. We use the two previous examples by keeping the same color code. The chord
inserted is colored in red.

1. For D =

1

2

3

4
5

6

7

8

9

, we obtain GD,2,1 =

1

2

3

4

5 6

7

8

9

10

.

2. For D =

1

2

3

4

5

6

7

, we have GD,7,3 =

1

2

3

4 5

6

7

8

.
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3.1.2 The chosen vertex of D is its root.

We now consider the root of D. Let τ ∈ J0, f(0)K be an integer to split the chords connected
with the root. There exists a unique integer s in J1, nK such that a0

D,τ = {0, s}. We choose an
element λ ∈ {0, 1} and define two maps.

Case 1: λ = 0. The map φλ0,τ is defined by:

φλ0,τ :


C (D) −→ {{u, v}, 0 ≤ u < v ≤ n+ 1}

{u, v} −→
{
{u, v} if u ≥ 1 or (u = 0 and v ≤ s− 1),
{v, n+ 1} if u = 0 and v ≥ s.

We call G̃λD,0,τ the diagram of degree n+1, open between the root and the vertex n+1 such that
C (G̃λD,0,τ ) = φλ0,τ (C (D)). The map φλ0,τ builds an open diagram by creating the vertex n+ 1.

Example. We choose the dissection diagram D =

1

2

3

4
5

6

7

8

9

. We consider τ = 2

and λ = 0. We have: G̃0
D,0,2 =

1

2

3

4

5 6

7

8

9

10

.

Case 2: λ = 1. We define the map φλ0,τ by:

φλ0,τ :


C (D) −→ {{u, v}, 0 ≤ u < v ≤ n+ 1}

{u, v} −→
{
{u+ 1, v + 1} if u ≥ 1 or (u = 0 and v ≤ s− 1),
{u, v + 1} if u = 0 and v ≥ s.

In this case the diagram G̃λD,0,τ of degree n + 1 is open between the root and the vertex 1 and
C (G̃λD,0,τ ) = φλ0,τ (C (D)).

Example. We use again the dissection diagram D =

1

2

3

4
5

6

7

8

9

with τ = 2 but

now λ = 1. We obtain: G̃1
D,0,2 =

1

2

3

4

5 6

7

8

9

10

.
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We now define the endomorphism homogeneous of degree 1 coding the insertion of a chord
in the root. Therefore we consider a non-negative integer (partition of the chords connected
with the root) and λ ∈ {0, 1}. We define φλ0,τ by:

Φλ
0,τ :


(D)n −→ (D)n+1

D −→
{
Gλ0,τ (D) if τ ≤ vD(0),
0 else

where the set of the chords of Gλ0,τ (D) is:

C (Gλ0,τ (D)) = φλ0,τ (C (D)) ∪ {{0, (1− λ)n+ 1}}.

Remarks. Let D be a dissection diagram, τ be an integer in J0, vD(0)K and λ be an element
in {0, 1}.

1. The chord inserted to build GλD,0,τ is naturally oriented. Indeed, either λ = 0 and we build
{0, n + 1} (chord labeled by n + 1), or λ = 1 and we build {0, 1} (chord labeled by 1) in
GλD,0,τ .

2. The sum of all maps Φλ
0,t is called operation 2.

Examples. We use the two previous examples. The inserted chord is colored in red.

1. For D =

1

2

3

4
5

6

7

8

9

, we have Φ0
0,2(D) =

1

2

3

4

5 6

7

8

9

10

.

2. For D =

1

2

3

4
5

6

7

8

9

, we have Φ1
0,2(D) =

1

2

3

4

5 6

7

8

9

10

.

3.1.3 Computation of L(D) where D is a dissection diagram of degree n ≥ 1.

Proposition 37. Let D be a dissection diagram of degree n ≥ 1, i and j two integers in
J1, nK, ti (respectively tj) be an integer in J0, f(i)K (respectively in J0, f(j)K), τ1 and τ2 two
integers in J0, f(0)K and, λ1 and λ2 two elements in {0, 1}. We have:

1. (Φi,t1(D), {i, i+ 1}) = (Φj,t2(D), {j, j + 1}) ⇐⇒ (i = j and t1 = t2),

2. (Φλ1
0,τ1(D), {0, (1−λ1)n+ 1}) = (Φλ2

0,τ2(D), {0, (1−λ2)n+ 1}) ⇐⇒ (λ1 = λ2 and τ1 = τ2),

3. (Φi,t1(D), {i, i+ 1}) 6= (Φλ1
0,τ1(D), {0, (1− λ1)n+ 1}).

Proof. Let D be a dissection diagram of degree n ≥ 1, i and j two integers in J1, nK, ti (respec-
tively tj) be an integer in J0, f(i)K (respectively in J0, f(j)K), τ1 and τ2 two integers in J0, f(0)K
and, λ1 and λ2 two elements in {0, 1}.
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1. It is sufficient to prove the implication:

(Φi,t1(D), {i, i+ 1}) = (Φi,t2(D), {i, i+ 1})⇒ t1 = t2.

We denote by p1 (respectively by p2) the vertex i of the dissection diagram Φi,t1(D) (re-
spectively the dissection diagram Φi,t2(D)) and we consider its valency v(p1) (respectively
v(p2)). We obtain v(p1) = t1 + 1 and v(p2) = t2 + 1. If we assume that the two couples
(Φi,t1(D), {i, i+1}) and (Φi,t2(D), {i, i+1}) are equal then the implication becomes trivial.

2. We put λ = λ1. To prove the equivalence, it is sufficient to consider the implication:

(Φλ
0,τ1(D), {0, (1− λ)n+ 1}) = (Φλ

0,τ2(D), {0, (1− λ)n+ 1})⇒ τ1 = τ2.

We use the same process as before.

3. As i is positive, it is trivial.

Corollary 38. Let D be a dissection diagram of degree n ≥ 1. We call σD the number
of different couples (G, a), where G is a dissection diagram of degree n + 1 and a is a chord
a = {u, v} with 0 ≤ u < v ≤ n+ 1, obtained by operations 1 and 2 applied to D. We have:

σD = 3n+ 2 + vD(0).

Proof. Let D be a dissection diagram of degree n ≥ 1. By direct calculation, we have:

σ(D) =

operation 1︷ ︸︸ ︷
n∑
i=1

(vD(i) + 1) +
operation 2︷ ︸︸ ︷

2(vD(0) + 1)

= (3n− vD(0)) + 2(vD(0) + 1)
= 3n+ 2 + vD(0).

Proposition 39. Let D be a dissection diagram of degree n ∈ N∗. We have

L(D) =
∑

i∈J1,nK
t∈J0,vD(i)K

xk{ai}(Φi,t(D))Φi,t(D) +
∑

τ∈J0,vD(0)K

[
Φ0

0,τ (D) + Φ1
0,τ (D)

]
,

with ai = {i, i+ 1}. In other words,

L(D) =
∑

i∈J1,nK
t∈J0,l(i)−1K

Φi,t(D) + x
∑

i∈J1,nK
t∈Jl(i),vD(i)K

Φi,t(D) +
∑

τ∈J0,vD(0)K

[
Φ0

0,τ (D) + Φ1
0,τ (D)

]
,

where for any integer i ∈ J1, nK, l(i) is the unique integer in J1, vD(i)K such that the chord aiD,l(i)
of D is labeled by i.

Proof. The fact that dissection diagrams obtained with operations 1 and 2 are elements of L(D)
is trivial.

Let (G, a) ∈ (D)n+1 × C (G) such that q{a} = D. We write a as a = {i, j} with {i, j} ∈
{{u, v}, 0 ≤ u < v ≤ n+ 1}.
Case 1 : i 6= 0. q{a}(G) = D (only one diagram) so j = i+ 1. We have then

(G, a) = (Φi,t(D), {i, i+ 1}) with t = vG(i)− 1.
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Case 2 : i = 0. q{a}(G) = D (only one diagram) so j ∈ {1, n+ 1}. We have then

(G, a) =
{

(Φ1
0,τ (D), {0, 1}) with τ = vG(0)− 1 if j = 1,

(Φ0
0,τ (D), {0, n+ 1}) with τ = vG(n+ 1)− 1 if j = n+ 1.

By direct calculation, we prove the following corollary.

Corollary 40. We assume x ∈ N. Let D be a dissection diagram of degree n ∈ N∗. We
denote by σL(D) the number of terms in L(D) counted with multiplicity. We have:

σL(D) = 3nx+ (1− x)
n∑
i=1

l(i) + (2− x)vD(0) + 2

where for any integer i ∈ J1, nK, l(i) is the unique integer in J1, vD(i)K such that the chord ail(i)
of D is labeled by i.

Proposition 41. Let x be a scalar in K. Let D1 and D2 be two nonempty dissection
diagrams. We have the equivalence:

L(D1) = L(D2) ⇐⇒ D1 = D2.

Proof. Let x be a scalar in K. Let D1 and D2 be two nonempty dissection diagrams. We recall
that vD1(0) (respectively vD2(0)) is the root valency of D1 (respectively D2). We know that,
for any positive integer n, the projection of L(D1) (respectively L(D2)) on the linear space of
dissection diagrams with the root valency equal to n is positive if n ∈ J1, vD1(0) + 1K \ {vD1(0)}
(respectively n ∈ J1, vD2(0) + 1K \ {vD2(0)}), and equals zero if n ≥ vD1(0) + 2 (respectively
n ≥ vD2(0) + 2). As a conclusion, if vD1(0) 6= vD2(0) the two elements L(D1) and L(D2) are
different. We then consider two dissection diagrams D1 and D2 such that vD1(0) = vD2(0).

We assume that L(D1) and L(D2) equal. We write D1 and D2 as D1 = A1
B1

C1

and

D2 = A2
B2

C2

. We define S1 =
D1

, S2 =
D1

, P1 =
D2

,

P2 =
D2

. The sets {S1, S2} and {P1, P2} are equal. Indeed, by inserting a chord,

there exists only two ways to obtain a dissection diagram with a root valency equal to vD1(0)+1
(respectively vD2(0) + 1). There are different cases.

If S1 = S2 or S1 6= S2 with S1 = P1 the result is trivial.
If S1 6= S2 and S1 = P2 then the dissection diagrams A1, A2, B1, B2 are all empty. Fur-

thermore, we have
C1

=
C2

and
C2

=
C1

. By

induction on their root valency, we obtain that C1 = C2 and the proposition is proved.
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Proposition 42. Let assume that R ⊂ K and x ∈ R∗+. Let D be a dissection diagram of
degree n greater than or equal to 2. We define the pairing

〈−,−〉 :
{

HD ⊗HD −→ K
D1 . . . Dk ⊗G1 . . . Gl −→ ZD1...Dk(G1 . . . Gl).

Then for any dissection diagram D of degree n ≥ 2, there exists a dissection diagram G of degree
n− 1 such that 〈D,L(G)〉 6= 0.

Proof. Let x be a positive scalar and D a dissection diagram of degree n greater than or equal to
2. As there is not any intersection between its chords there exists a chord a such that a connects
two consecutive vertices. We call G the dissection diagram G = q{a}(D). It has a degree equal
to n− 1, which establishes the proposition.

Proposition 43. Let assume that R ⊂ K and x ∈ R∗+. Let n be a non-negative integer and
en ∈ TR the ladder of degree n. By using the previous pairing we have that for any non-negative
integer n and any dissection diagram D of degree n the scalar 〈D,ϕ(en)〉 is positive.

Proof. We give a recursive proof. The result is trivial for e1. We assume the result true for a
particular positive rank n. We write ϕ(en) =

∑
G∈(D)n
diagram

aGG where each aG is positive. Then,

ϕ(en+1) = ϕ(en) . =
∑

G∈(D)n
diagram

aGL(G) =
∑

D∈(D)n+1
diagram

bDD

and, according to the previous proposition, all bD are positive scalars. The result is true for the
rank n+ 1, so the proposition is proved.

3.2 Insertion of a chord in two dissection diagrams

Let D1 and D2 be two dissection diagrams of positive degree n1 and n2. We choose a vertex
i of D1, a vertex j of D2, integers t ∈ J0, vD1(i)K and τ ∈ J0, vD2(j)K. We insert a new chord
by using the following steps. Thank to the opening maps defined in section 3.1, we obtain two
open diagrams. Then, we change the vertices labels and insert a new chord to have a dissection
diagram of degree n1 + n2 + 1. Since a dissection diagram has only one root, we open at least
one of the two dissection diagrams D1 and D2 at the root. We introduce an integer λ ∈ {0, 1}
that will be useful in the sequel.

3.2.1 Open D1 at the root and D2 at another vertex.

We consider the root of D1, an integer t ∈ J0, vD1(0)K (partition of the chords of D1 connected
with the root), an integer λ ∈ {0, 1} (location of the root of the open diagram G̃λ0,t obtained
with D1), a vertex of D2 different from the root (i.e. an integer j ∈ J1, n2K) and an integer
τ ∈ J0, vD2(j)K (partition of the chords of D2 with the vertex j in common). The root of the
dissection diagram GλD1,D2,t,j,τ

built after the insertion is given by the root of D2.
According to paragraph 3.1, thanks to the map φλ0,t (respectively φj,τ ), we can consider the

open diagram G̃λD1,0,t equipped with the set φλ0,t(C (D1)) (respectively G̃D2,j,τ equipped with the
set φj,τ (C (D2))).

To change the labels of the chords, as the root of GλD1,D2,t,j,τ
originates from the root of D2,

we consider the maps:

γλD1,t :


φ0
t,λ(C (G1)) −→ {{u, v}, 0 ≤ u < v ≤ n1 + n2 + 1}

{u, v} −→
{
{u+ j − λ, v + j − λ} if u ≥ 1,
{j + λ(n1 + 1), v + j − λ} if u = 0
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and

γD2,j,τ :


φj,τ (C (G2)) −→ {{u, v}, 0 ≤ u < v ≤ n1 + n2 + 1}

{u, v} −→


{u, v} if u ≤ j and v ≤ j,
{u, v + n1} if u ≤ j and v ≥ j + 1,
{u+ n1, v + n1} if u ≥ j + 1.

With these functions, we have a diagram of degree n1 +n2 + 1 which is not a dissection diagram
since there are only n1 + n2 chords. We just have to build the chord {j, j + n1 + 1}.

We now define a morphism from D ⊗ D to D homogeneous of degree 1. We consider two
non-negative integers t and τ , an element λ in {0, 1}, a positive integer j and the following map:

Γλt,j,τ :


(D)n1 ⊗ (D)n2 −→ (D)n1+n2+1

D1 ⊗D2 −→
{
GλD1,D2,t,j,τ

if t ≤ vD1(0), j ≤ n2 and τ ≤ vD2(j),
0 else,

where the set C (GλD1,D2,t,j,τ
) is given by:

C (GλD1,D2,t,j,τ ) = γλD1,t(φ
λ
0,t(C (D1))) ∪ γD2,j,τ (φj,τ (C (G2))) ∪ {{j, j + n1 + 1}}.

Example. We use the dissection diagrams D1 = 1

2

3 and D2 = 1

2

3

with λ = 1, t = 1, j = 2 and τ = 1. We first build G̃1
D1,0,1 and G̃D2,2,1 by keeping the color code

explained in section 3.1. Finally, we make the insertion. The old root of D1 becomes white and
the new chord is colored in red. We have:

D1 = 1

2

3
t=1−−→
λ=1

G̃1
D1,0,1 =

1

2 3

4
,

D2 = 1

2

3
τ=1−−→
j=2

G̃D2,2,1 =
1

2 3

4
,

Γ1
1,2,1(D1 ⊗D2) =

2

3

4 5

6

7

01

=

1

2

3

4

5

6

7

.

Remarks. Let D1 and D2 be two dissection diagrams of respective positive degree n1 and
n2 and λ ∈ {0, 1}, t ∈ J0, vD1(0)K, j ∈ J1, n2K and τ ∈ J0, vD2(j)K be integers.

1. It is not necessary to consider the two possible values of λ. Indeed by direct calculation
we have Γλt,j,τ (D1 ⊗D2) = Γ1−λ

t,j,τ (D1 ⊗D2).

2. We easily know the orientation of the inserted chord {j, j + n1 + 1}. Indeed there exists a
unique integer l(j) such that the chord ajD2,l(j) of D2 is labeled by j. If τ ≤ l(j)− 1 then
the chord {j, j + n1 + 1} of Γλt,j,τ (D1 ⊗ D2) is labeled by j else τ ≥ l(j) and the chord
{j, j + n1 + 1} of Γλt,j,τ (D1 ⊗D2) is labeled by j + n1 + 1.

3. We call κ the map sending D1⊗D2 to D2⊗D1. The sum of maps of types Γλt,j,τ or Γλt,j,τ ◦κ
is called operation 3.
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3.2.2 Open D1 and D2 at the root.

We now work with the root of the two dissection diagrams. We consider an integer t ∈ J0, vD1(0)K
(partition of the chords of D1 connected with the root), an integer τ ∈ J0, vD2(0)K (partition of
the chords of D2 connected with the root) and two integers λ1, λ2 ∈ {0, 1} (location of the root
of the two diagrams G̃λ1

D1,0,t and G̃λ2
D2,0,τ , built with the opening maps defined in section 3.1).

The root of the dissection diagram Gλ1,λ2
D1,D2,t,τ

, built after insertion, is again given by the root of
D2. There are two cases.

Case 1: λ = λ2 = 0 and λ1 = 1− λ = 1. According to paragraph 3.1, thank to the map φ1
0,t

(respectively φ0
0,τ ), we can consider the open diagram G̃1

D1,0,t equipped with the set φ1
0,t(C (D1))

(respectively G̃0
D2,0,τ with the set φ0

0,τ (C (D2))).
To change labels, as the root of G1,1

D1,D2,t,τ
is given by the root of D2, we use the following

maps:

γ1
D1,t :


φ1

0,t(C (D1)) −→ {{u, v}, 0 ≤ u < v ≤ n1 + n2 + 1}

{u, v} −→
{
{u+ n2, v + n2} if u ≥ 1,
{u, v + n2} if u = 0

and
γ0
D2,τ :

{
φ0

0,τ (C (D2)) −→ {{u, v}, 0 ≤ u < v ≤ n1 + n2 + 1}
{u, v} −→ {u, v}.

The diagram of degree n1 +n2 + 1 built with the previous map is not a dissection diagram since
there are just n1 + n2 chords. We need only add the chord {0, n2 + 1}.

We define a morphism from D ⊗ D to D homogeneous of degree 1. Let t and τ be two
non-negative integers and we consider the map:

Γ0
t,τ :


(D)n1 ⊗ (D)n2 −→ (D)n1+n2+1

D1 ⊗D2 −→
{
G1,0
D1,D2,t,τ

si t ≤ vD1(0) and τ ≤ vD2(0),
0 sinon,

with
C (G1,0

D1,D2,t,τ
) = γ1

D1,t(φ
1
0,t(C (D1))) ∪ γ0

D2,τ (φ0
0,τ (C (D2))) ∪ {{0, n2 + 1}}.

Example. We use the dissection diagrams D1 = 1

2

3 and D2 = 1

2

3

with t = 1 and τ = 1. We have:

D1 = 1

2

3
t=1−−−→
λ1=1

G̃1
D1,0,t =

1

2 3

4
,

D2 = 1

2

3
τ=1−−−→
λ2=0

G̃0
D2,0,τ =

1

2 3

4
,

Γ0
t,τ (D1 ⊗D2) =

4

5

6 7

0

1

23

=

1

2

3

4

5

6

7

.
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Case 2: λ = λ2 = 1 and λ1 = 1−λ = 0. We now consider the open diagram G̃0
D1,0,t equipped

with the set φ0
0,t(C (D1)) (respectively G̃1

D2,0,τ with the set φ1
0,τ (C (D2))).

To change labels we use:

γ0
D1,t :

{
φ0

0,t(C (D1)) −→ {{u, v}, 0 ≤ u < v ≤ n1 + n2 + 1}
{u, v} −→ {u, v}

and

γ1
D2,τ :


φ1

0,τ (C (D2)) −→ {{u, v}, 0 ≤ u < v ≤ n1 + n2 + 1}

{u, v} −→
{
{u+ n1, v + n1} if u ≥ 1,
{u, v + n1} if u = 0.

To have a dissection diagram of degree n1 + n2 + 1 we add the chord {0, n1 + 1}.
Let t and τ be two non-negative integers and we define the morphism Γ1

t,τ homogeneous of
degree 1 by:

Γ1
t,τ :


(D)n1 ⊗ (D)n2 −→ (D)n1+n2+1

D1 ⊗D2 −→
{
G0,1
D1,D2,t,τ

if t ≤ vD1(0) and τ ≤ vD2(0),
0 else,

with
C (G0,1

D1,D2,t,τ
) = γ0

D1,t(φ
0
0,t(C (D1))) ∪ γ1

D2,τ (φ1
0,τ (C (D2))) ∪ {{0, n1 + 1}}.

Example. With D1 = 1

2

3 , D2 = 1

2

3 , t = 1 and τ = 1 we have:

D1 = 1

2

3
t=1−−−→
λ1=0

G̃0
D1,0,t =

1

2 3

4
,

D2 = 1

2

3
τ=1−−−→
λ2=1

G̃1
D2,0,τ =

1

2 3

4
,

Γ1
t,τ (D1 ⊗D2) =

0

1

2 3

4

5

67

=

1

2

3

4

5

6

7

.

Remarks. Let D1 and D2 be two dissection diagrams of respective positive degree n1 and
n2 and λ1, λ2 ∈ {0, 1}, t ∈ J0, vD1(0)K and τ ∈ J0, vD2(0)K be integers.

1. By direct calculation we have:

Γ0
t,τ (D1 ⊗D2) = Γ1

τ,t(D2 ⊗D1) and Γ1
t,τ (D1 ⊗D2) = Γ0

τ,t(D2 ⊗D1).

2. The two cases (λ1 = 0, λ2 = 0) and (λ1 = 1, λ2 = 1) can be ignored. Indeed, it is sufficient
to use the two maps

γ̃0
D1,t :


φ0

0,t(C (D1)) −→ {{u, v}, 0 ≤ u < v ≤ n1 + n2 + 1}

{u, v} −→
{
{u+ n2 + 1, v + n2 + 1} si v ≤ n1

{0, u+ n2 + 1} si v = n1 + 1
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and

γ̃1
D1,t :


φ1

0,t(C (D1)) −→ {{u, v}, 0 ≤ u < v ≤ n1 + n2 + 1}

{u, v} −→
{
{u− 1, v − 1} si u ≥ 1,
{v − 1, n1 + 1} si u = 0,

and the dissection diagrams G0,0
D1,D2,t,τ

and G1,1
D1,D2,t,τ

of degree n1 + n2 + 1 with

C (G0,0
D1,D2,t,τ

) = γ̃0
D1,t(φ

0
0,t(C (D1))) ∪ γ0

D2,τ (φ0
0,τ (C (D2))) ∪ {{0, n2 + 1}},

C (G1,1
D1,D2,t,τ

) = γ̃1
D1,t(φ

1
0,t(C (D1))) ∪ γ1

D2,τ (φ1
0,τ (C (D2))) ∪ {{0, n1 + 1}}.

Then we have: G0,0
D1,D2,t,τ

= G1,0
D1,D2,t,τ

and G1,1
D1,D2,t,τ

= G0,1
D1,D2,t,τ

.

3. The sum of maps of type Γλt,τ is called operation 4.

3.2.3 Computation of L(D1D2) where (D1, D2) ∈ (D)n1 × (D)n2 and n1, n2 ≥ 1.

Proposition 44. Let D1 and D2 be two dissection diagrams of positive degree n1 and n2, i
in J1, n1K, % in J0, vD1(i)K, p in J0, vD2(0)K, j, j1 and j2 in J1, n2K, τ , respectively τ1, respectively
τ2 in J0, vD2(j)K, respectively J0, vD2(j1)K, respectively J0, vD2(j2)K, ω, ω1 and ω2 in J0, vD2(0)K,
t, t1 and t2 in J0, vD1(0)K) in λ, λ1, λ2 in {0, 1} be integers.

We assume first that D1 and D2 are two different dissection diagrams. We have the following
statements:

1. (Γ1
t1,j1,τ1(D1 ⊗D2), {j1, j1 + n1 + 1}) = (Γ1

t2,j2,τ2(D1 ⊗D2), {j2, j2 + n1 + 1}) is equivalent
to (j1 = j2, t1 = t2 and τ1 = τ2),

2. (Γλ1
t1,ω1(D1⊗D2), {0, λ1n1 +(1−λ1)n2 +1}) = (Γλ2

t2,ω2(D1⊗D2), {0, λ2n1 +(1−λ2)n2 +1})
is equivalent to (t1 = t2, ω1 = ω2 and λ1 = λ2),

3. (Γ1
t1,j1,τ1(D1 ⊗D2), {j, j + n1 + 1}) 6= (Γλt2,ω2(D1 ⊗D2), {0, λ2n1 + (1− λ2)n2 + 1}),

4. (Γ1
t,j,τ (D1 ⊗D2), {j, j + n1 + 1}) 6= (Γ1

p,i,%(D2 ⊗D1), {i, i+ n2 + 1}).

We assume that D1 equals D2 and we denote D = D1 = D2. We have the following state-
ments:

5. (Γ1
t1,j1,τ1(D ⊗D), {j1, j1 + n1 + 1}) = (Γ1

t2,j2,τ2(D ⊗D), {j2, j2 + n1 + 1}) is equivalent to
(j1 = j2, t1 = t2 and τ1 = τ2),

6. (Γλt,ω(D ⊗D), {0, n1 + 1}) = (Γ1−λ
ω,t (D ⊗D), {0, n1 + 1}),

7. (Γ1
t1,j1,τ1(D ⊗D), {j, j + n1 + 1}) 6= (Γλt2,ω2(D ⊗D), {0, n1 + 1}).

Proof. We assume that D1 and D2 are two different dissection diagrams.

1. It is sufficient to prove:

Γ1
t1,j,τ1(D1 ⊗D2) = Γ1

t2,j,τ2(D1 ⊗D2) =⇒ (t1 = t2 and τ1 = τ2).

We assume K1 = Γ1
t1,j,τ1(D1 ⊗ D2) equals K2 = Γ1

t2,j,τ2(D1 ⊗ D2). We denote by p1(j)
(respectively by p2(j)) the vertex j of the dissection diagram K1 (respectively of the
dissection diagram K2) and we consider its valency v1(j) (respectively v2(j)). We have:

v1(j) = vD1(0)− t1 + τ1 + 1 = vD1(0)− t2 + τ2 + 1 = v2(j).

We now use the subset of chords AK1,j (respectively AK2,j) and the chord a = {j, j+n1+1}
too. We know that a = ajK1,τ1+1 = ajK2,τ2+1 so we have t1 = t2 and τ1 = τ2.
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2. We assume that the two dissection diagrams Γλ1
t1,ω1(D1⊗D2) and Γλ2

t2,ω2(D1⊗D2) are equal.
We further assume that the two chords {0, λ1n1+(1−λ1)n2+1} and {0, λ2n1+(1−λ2)n2+1}
are equal and λ1 6= λ2. We then obtain n1 = n2. Without loss of generality we can use
the case λ1 = 0 and λ2 = 1. We denote K1 = Γλ1

t1,ω1(D1 ⊗D2) and K2 = Γλ2
t2,ω2(D1 ⊗D2),

and consider the subgraph K1 (respectively the subgraph K2) created with vertices from
the set {1, . . . , n1 + 1} and contract {0, n1 + 1}. Since K1 and K2 are equal, the resulting
dissection diagrams are equal as well. And yet, with K1 (respectively K2) we obtain D2
(respectively D1) and thus D1 = D2. We can conclude that λ1 and λ2 are equal. Without
loss of generality, we assume λ1 = λ2 = 0. Let p1 (respectively p2) be the root of K1
(respectively K2). We consider their valency v1 (respectively v2). We have:

v1 = vD2(0)− ω1 + t1 + 1 = vD2(0)− ω2 + t2 + 1 = v2.

We now use the subset of chords AK1,0 (respectively AK2,0) and the chord a = {0, n2 + 1}.
We have a = a0

K1,t1+1 = a0
K2,t2+1 so t1 = t2 and ω1 = ω2.

3. As j is positive, this point is trivial.

4. We assume there exists integers j ∈ J1, n2K (respectively i ∈ J1, n1K), t ∈ J0, vD1(0)K and
τ ∈ J0, vD2(j)K (respectively p ∈ J0, vD2(0)K and % ∈ J0, vD1(i)K) such that

(Γ1
t,j,τ (D1 ⊗D2), {j, j + n1 + 1}) = (Γ1

p,i,%(D2 ⊗D1), {i, i+ n2 + 1}).

We obtain i = j and n1 = n2. We denote K1 = Γ1
t,j,τ (D1⊗D2) and K2 = Γ1

p,i,%(D2⊗D1),
we consider the subgraph of K1 (respectively K2) formed by vertices in {1, . . . , j} ∪ {j +
n1 + 1, . . . , j + 2n1 + 1} and we contract {j, j + n1 + 1}. We then obtain D1 = D2.

We now assume D = D1 = D2.

5. It is sufficient to consider the proof of 1.

6. It is true by definition.

7. It is trivial because j is positive.

By direct calculation, we prove the following corollary.

Corollary 45. Let D1 and D2 be two dissection diagrams of positive degree n1 and n2. We
define σD as the numbers of different couples (G, a) where G is a dissection diagram of degree
n1 +n2 +1 and a a chord a = {u, v} with 0 ≤ u < v ≤ n1 +n2 +1 obtained by applying operations
3 and 4 on D1 and D2. We have:

σ(D1, D2) =


(vD2(0) + 1)

n1∑
i=0

(vD1(i) + 1) + (vD1(0) + 1)
n2∑
j=0

(vD2(j) + 1) if D1 6= D2,

(vD2(0) + 1)
n1∑
i=0

(vD1(i) + 1) if D1 = D2,

=
{

(vD2(0) + 1)(3n1 + 1) + (vD1(0) + 1)(3n2 + 1) if D1 6= D2,

(vD1(0) + 1)(3n1 + 1) if D1 = D2.

Proposition 46. Let D1 and D2 be two dissection diagrams of positive degree n1 and n2.

L(D1D2) =
∑

t∈J0,vD1 (0)K
j∈J1,n2K

τ∈J0,vD2 (j)K

x
k{aj,n1}

(Γ1
t,j,τ (D1⊗D2))Γ1

t,j,τ (D1 ⊗D2)
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+
∑

τ∈J0,vD2 (0)K
i∈J1,n1K

t∈J0,vD1 (i)K

x
k{ai,n2}

(Γ1
τ,i,t(D2⊗D1))Γ1

τ,i,t(D2 ⊗D1) +
∑

λ∈{0,1}
t∈J0,vD1 (0)K
τ∈J0,vD2 (0)K

Γλt,τ (D1 ⊗D2)

with
aj,n1 = {j, j + n1 + 1} and ai,n2 = {i, i+ n2 + 1}.

In other words,

L(D1D2) =
∑

t∈J0,vD1 (0)K
j∈J1,n2K

τ∈J0,l2(j)−1K

Γ1
t,j,τ (D1 ⊗D2) + x

∑
t∈J0,vD1 (0)K
j∈J1,n2K

τ∈Jl2(j),vD2 (j)K

Γ1
t,j,τ (D1 ⊗D2)

+
∑

τ∈K0,vD2 (0)K
i∈J1,n1K

t∈J0,l1(i)−1K

Γ1
τ,i,t(D2 ⊗D1) + x

∑
τ∈J0,vD2 (0)K
i∈J1,n1K

t∈Jl1(i),vD1 (i)K

Γ1
τ,i,t(D2 ⊗D1) +

∑
λ∈{0,1}

t∈J0,vD1 (0)K
τ∈J0,vD2 (0)K

Γλt,τ (D1 ⊗D2)

where for any couples (i, j) ∈ J1, n1K × J1, n2K, (l1(i), l2(j)) is the unique couple of integers in
J0, vD1(i)K × J0, vD2(j)K such that aiD1,l1(i) in C (D1) is labeled by i and ajD2,l2(j) in C (D2) is
labeled by j.

Proof. We recall that, if Id is the identity morphism and l is the projection on D+, we have:

L(D1D2) =



∑
G∈D

G diagram

(
ZD1D2 ⊗ Z

)(
∆(G)

)
G if D1 6= D2,

2
∑
G∈D

G diagram

(
ZD1D2 ⊗ Z

)(
∆(G)

)
G else.

Let (G, a) ∈ (D)n1+n2+1 × C (G) be a couple diagram-chord such that q{a}(G) = D1D2. We
write a as a = {i, j} with 0 ≤ i < j ≤ n1 + n2 + 1. There exists ν ∈ J1, vG(i)K such that
aiν = {i, j}. qa(G) = D1D2 so j = i+ n+ 1 with n ∈ {n1, n2}.
Case 1 : i 6= 0. We consider the subgraph S of G with vertices

{0, . . . , i} ∪ {j, . . . , n1 + n2 + 1}.

We have:

(G, a) ={
(Γ1
t,i,τ (D1 ⊗D2), {i, i+ n1 + 1}) with t = vD1(0)− vG(i) + ν and τ = ν − 1 if q{a}(S) = D2,

(Γ1
τ,i,t,(D2 ⊗D1), {i, i+ n2 + 1}) with t = ν − 1 and τ = vD2(0)− vG(i) + ν if q{a}(S) = D1.

Case 2 : i = 0. We use the subgraph S of G with vertices {0, . . . , j}. We have:

(G, a) ={
(Γ1
t,τ (D1⊗, D2), {0, n2 + 1}) with t = vD1(0)− vG(0) + ν and τ = ν − 1 if q{a}(S) = D1,

(Γ0
t,τ (D1 ⊗D2), {0, n1 + 1}) with t = ν − 1 and τ = vD2(0)− vG(0) + ν if q{a}(S) = D2.
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Corollary 47. We assume that x ∈ N. Let D1 and D2 be two dissection diagrams of positive
degree n1 and n2. We call σL(D1D2) the number of terms in L(D1D2) counted with multiplicity .

σL(D1D2) =(vD2(0) + 1)
[
x(3n1 + 1) + (1− x)

n1∑
i=1

l1(i) + (1− x)(vD1(0) + 1)
]

+(vD1(0) + 1)

x(3n2 + 1) + (1− x)
n2∑
j=1

l2(j) + (1− x)(vD2(0) + 1)


where, for any (i, j) ∈ J1, n1K × J1, n2K, (l1(i), l2(j)) is the unique element in J0, vD1(i)K ×
J0, vD2(j)K such that the chord aiD1,l1(i) of D1 is labeled by i and the chord ajD2,l2(j) of D2 is
labeled by j.

Proposition 48. Let x be a scalar. Let D, D1, D2, G1 and G2 be five nonempty dissection
diagrams. Then,

1. L(D) 6= L(G1G2),

2. L(D1D2) = L(G1G2) ⇐⇒ ((D1, D2) = (G1, G2) or (D1, D2) = (G2, G1)).

Proof. Let x be a scalar in K. Let D, D1, D2, G1 and G2 five dissection diagrams. We
consider their root valency. As in the proof of proposition 41, if vD(0) 6= vG1(0) + vG2(0) and if
vD1(0)+vD2(0) 6= vG1(0)+vG2(0) then L(D) 6= L(G1G2) and L(D1D2) 6= L(G1G2). We consider
the case where vD(0) = vG1(0) + vG2(0) and vD1(0) + vD2(0) = vG1(0) + vG2(0). We write the

dissection diagrams as D = A
B

C

, D1 = A1
B1

C1

, D2 = A2
B2

C2

G1 =

α1
β1

γ1

and G2 =
α2

β2

γ2

. We will use T1 =
D

, T2 =
D

,

S1 =
D1 D2

, S2 =
D2 D1

, P1 =
G1 G2

, P2 =
G2 G1

, H1 =

D1 D2

, H2 =
D2 D1

, K1 =
G1 G2

, K2 =
G2 G1

. We recall that

Xn is the corolla of degree n.

1. We introduce J1 =
A

B C

and J2 =

A

B

C

. We assume L(D) and

L(G1G2) equal so vD(0) ≥ 2. There are two cases:

(a) If vG1(0) and vG2(0) are both different from 1, then there exists an integer i ∈ {1, 2}
such that J1 = Ki. It is impossible.
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(b) We now assume that there exists at least one integer i ∈ {1, 2} such that vGi(0) = 1.
Without loss of generality, we can consider i = 1 so γ1 is empty. We use know the
fact that {T1, T2} and {P1, P2} be equal. We have two cases.
i. In the first one, (T1, T2) equals (P1, P2) so α1 and β1 are empty, G1 = X1, A = α2,
B = β2 and we have more

A

B

γ2

= D =
A B

γ2

.

Thereafter A and B are empty and we have the equality

γ2

=
γ2

.

So, there exists a non-negative integer n such that γ2 = Xn and then D = Xn+2,
G1 = X1 and Xn+1. It is impossible.

ii. In the second one, (T1, T2) equals (P2, P1) so α2 and β2 are empty, A = α1,
B = β1 and we have two equalities

D =

A

B

γ2

and
C

=
γ2

.

So, we obtain

γ2

A

B = T2 = A

B

γ2

.

If γ2 is empty then A and B are empty too and we obtain D = X2 and G1 =
G2 = X1. It is impossible. The diagram γ2 is not empty. As for any integers i
and j in {1, 2}, the dissection diagrams Ji and Kj are differents, there exists two

nonempty dissection diagrams W1 and W2 such that J1 =
W1 B

and

J2 =
A W2

. Then A and B are empty and we obtain that D, G1 and

G2 are corollas. It is impossible.

Thus, L(D) and L(G1G2) are different.
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2. We assume L(D1D2) and L(G1G2) equal. We have to consider three cases.

(a) In the first case, vD1(0), vD2(0), vG1(0) and vG2(0) are all equal to 1. As the two sets
{S1, S2} and {P1, P2} are equal the result is trivial.

(b) In the second case, vD1(0), vD2(0), vG1(0) and vG2(0) are all positive integers different
from 1. As the two sets {H1, H2} and {K1,K2} are equal the result is trivial.

(c) In the third case, vD1(0) = 1 and vD2(0) 6= 1. The sets {S1, S2} and {P1, P2} are
equal so we assume without loss of generality that S1 = P1 and S2 = P2. For any
i ∈ {1, 2}, we have Ai = αi and Bi = βi.
We start by proving that there exists a unique integer i ∈ {1, 2} such that vGi(0) =
1. We need only prove existence. We assume vG1(0) and vG2(0) different from 1.
We consider Ω1 (respectively Ω2) the set of dissection diagrams of valency vD1(0) +
vD2(0) in the root built to obtain L(D1D2) (respectively L(G1G2)). By writing

γ2 =
γ̃2 γ2

with γ2 of valency 1 in the root we have two different possiblities;

either Ω1,1 =

A1

B1

A2

B2

C2

equals Ω2,1 = α2

β2

γ2

α1

β1

γ1

either Ω2,2 =

α2

β2

γ̃2

γ2
α1

β1

γ1

. So, B2 = β2 is empty and A2(= α2) and D1 have the same

degree. We consider K1 and K2. If there exists i ∈ {1, 2} such that K1 = Hi or
K2 = Hi the one of the two couples (G1, G2) and (G2, G1) equals (Di, D−i+3). Is
is not consistant. Thus there exists a nonempty dissection diagram W such that

K1 =
W B1

and we obtain

deg(D1) > deg(B1) = deg(G2) > deg(α2) + 1 > deg(D1)

which is impossible.
We thus know that there exists a unique integer i ∈ {1, 2} such that vGi(0) = 1. If

i = 1 then the result is trivial. If i = 2, then we have Ω1,1 =

A1

B1

A2

B2

C2
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equals Ω2,1 = α2

β2

α1

β1

γ1

or Ω2,2 =

α2

β2

α1

β1

γ1

. Furthermore vγ1(0) =

vC2(0) so γ1 and C2 are equal. If Ω1,1 = Ω2,2 then A1 = A2 = α1 = α2 and
B1 = B2 = β1 = β2 so (D1, D2) = (G2, G1). If Ω1,1 6= Ω2,2 then Ω1,1 = Ω2,1 and

Ω2,2 = A1

B1

A2

B2

C2

which is impossible.

We have proved the statement

L(D1D2) = L(G1G2) ⇐⇒ ((D1, D2) = (G1, G2) or (D1, D2) = (G2, G1)) .

Proposition 49. Let n be a positive integer. There exists a basis B1 of sub-binary forests
and a basis B2 of the dissection diagrams algebra such that the matrix in those bases of the
restriction of ϕ on homogeneous elements of degree n is triangular by blocks.

Proof. Let n be a positive integer and t a sub-binary tree of degree n. We call m(t) the number
of vertices of t with two children. For any disjoint union of dissection diagram U = D1 . . . Dk

the integer k is called length of U and is denoted by µ(U). Let D be a dissection diagram of
degree n. We call m(D) = max{µ(qC(D)), C ∈ C (D)}. By definition of L, if m(D) < m(t)
then ZD(ϕ(t)) = 0.

Corollary 50. Let n be a positive integer. We recall that en ∈ TR is the ladder of degree n,
Yn ∈ D is the path tree of degree n and Xn ∈ D is the corolla of degree n. Let t be a sub-binary

tree. We have ZYn(ϕ(t)) =
{
n! if t = en,

0 else
and ZXn(ϕ(t)) 6= 0. Actually ZXn(ϕ(t)) = 2int(t)

where int(t) is the number of internal vertices i.e. the number of vertices with at least one child.

Remark. By considering ϕ as the Hopf algebra morphism from SBT to H~
D, we can refor-

mulate conjecture 35 as follow: ϕ is injective. Results 41, 48 and 49 suggest that the conjecture
is true. Direct calculations prove that the morphism ϕ, when restricted to degrees 1, 2 3 or 4,
is injective.

References
[1] D. Burde, Left-symmetric algebras, or pre-Lie algebras in geometry and physics, Cent.

Eur. J. Math., 4 (2006), pp. 323–357.

[2] E. Burgunder, B. Delcroix-Oger, and D. Manchon, An operad is never free as a
pre-Lie algebra, ArXiv e-prints, (2017).

[3] F. Chapoton, On some anticyclic operads, Algebr. Geom. Topol., 5 (2005), pp. 53–69.

[4] , Free pre-Lie algebras are free as lie algebras, Canad. Math. Bull., 53 (2010), pp. 425–
437.

35



[5] F. Chapoton and M. Livernet, Pre-Lie algebras and the rooted trees operad, Internat.
Math. Res. Notices, (2001), pp. 395–408.

[6] A. Connes and D. Kreimer, Hopf algebras, renormalization and noncommutative geom-
etry, in Quantum field theory: perspective and prospective (Les Houches, 1998), vol. 530
of NATO Sci. Ser. C Math. Phys. Sci., Kluwer Acad. Publ., Dordrecht, 1999, pp. 59–108.

[7] P. Doubilet, G.-C. Rota, and R. Stanley, On the foundations of combinatorial theory.
VI. The idea of generating function, (1972), pp. 267–318.

[8] C. Dupont, The combinatorial hopf algebra of motivic dissection polylogarithms, Adv.
Math., 264 (2014), pp. 646–699.

[9] , Périodes des arrangements d’hyperplans et coproduit motivique, PhD thesis, Univer-
sité Pierre et Marie Curie, 2014.

[10] L. Foissy, Algèbres de Hopf Combinatoires.

[11] , Finite-dimensional comodules over the Hopf algebra of rooted trees, J. Algebra, 255
(2002), pp. 89–120.

[12] , The Hopf algebra of Fliess operators and its dual pre-Lie algebra, Comm. Algebra,
43 (2015), pp. 4528–4552.

[13] A. Frabetti and D. Manchon, Five interpretations of Faà di Bruno’s formula, in Faà di
Bruno Hopf algebras, Dyson-Schwinger equations, and Lie-Butcher series, vol. 21 of IRMA
Lect. Math. Theor. Phys., Eur. Math. Soc., Zürich, 2015, pp. 91–147.

[14] M. Gerstenhaber, The cohomology structure of an associative ring, Ann. of Math. (2),
78 (1963), pp. 267–288.

[15] R. Grossman and R. G. Larson, Hopf-algebraic structure of families of trees, J. Algebra,
126 (1989), pp. 184–210.

[16] , Hopf-algebraic structure of combinatorial objects and differential operators, Israel J.
Math., 72 (1990), pp. 109–117. Hopf algebras.

[17] , Symbolic computation of derivations using labelled trees, J. Symbolic Comput., 13
(1992), pp. 511–523.

[18] M. E. Hoffman, Combinatorics of rooted trees and Hopf algebras, Trans. Amer. Math.
Soc., 355 (2003), pp. 3795–3811 (electronic).

[19] M. Livernet, A rigidity theorem for pre-Lie algebras, J. Pure Appl. Algebra, 207 (2006),
pp. 1–18.

[20] J.-L. Loday and M. Ronco, Combinatorial Hopf algebras, in Quanta of maths, vol. 11
of Clay Math. Proc., Amer. Math. Soc., Providence, RI, 2010, pp. 347–383.

[21] C. Mammez, Deux exemples d’algèbres de Hopf d’extraction-contraction: mots tassés et
diagrammes de dissection, PhD thesis, Université du Littoral Côte d’Opale - LMPA Joseph
Liouville, 2017.

[22] A. Mansuy, Preordered forests, packed words and contraction algebras, J. Algebra, 411
(2014), pp. 259–311.

[23] J.-M. Oudom and D. Guin, On the Lie envelopping algebra of a pre-Lie algebra, Journal
of K-theory: K-theory and its Applications to Algebra, Geometry, and Topology, 2 (2008),
pp. 147–167.

36



[24] F. Panaite, Relating the Connes-Kreimer and Grossman-Larson Hopf algebras built on
rooted trees, Lett. Math. Phys., 51 (2000), pp. 211–219.

[25] N. J. A. Sloane, The On-line Encyclopedia of Integer Sequences, 1964.

[26] B. Vallette, Homology of generalized partition posets, J. Pure Appl. Algebra, 208 (2007),
pp. 699–725.

[27] E. B. Vinberg, The theory of homogeneous convex cones, Trudy Moskov. Mat. Obšč., 12
(1963), pp. 303–358.

37


	Hopf algebra of dissection diagrams
	Reminders
	Path trees and corollas: two Hopf subalgebras of HD
	Path trees and symmetric functions
	Corollas and the Faà di Bruno Hopf algebra

	Primitive elements of degree less than or equal to 3
	The antipode calculation

	Dissection diagrams, rooted trees, theorem of Oudom-Guin
	Pre-Lie algebras and theorem of Oudom-Guin
	Hopf algebras of rooted trees
	Hopf algebra HGL of Grossman-Larson rooted trees
	Quotient Hopf algebra of sub-binary trees

	Dual of the dissection diagrams Hopf algebra

	Definition of a Hopf algebra morphism from HGL to HD
	Insertion of a chord in a vertex of a dissection diagram D
	The chosen vertex of D is different from the root.
	The chosen vertex of D is its root.
	Computation of L(D) where D is a dissection diagram of degree n1.

	Insertion of a chord in two dissection diagrams
	Open D1 at the root and D2 at another vertex.
	Open D1 and D2 at the root.
	Computation of L(D1D2) where (D1,D2)(D)n1(D)n2 and n1,n21.



