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Abstract. Motivated by ¢-shuffle products determined by Singer from g-analogues of mul-
tiple zeta values, we build in this article a generalisation of the shuffle and stuffle products in
terms of weak shuffle and stuffle products. Then, we characterise weak shuffle products and
give as examples the case of an alphabet of cardinality two or three. We focus on a comparison
between algebraic structures respected in the classical case and in the weak case. As in the
classical case, each weak shuffle product can be equipped with a dendriform structure. However,
they have another behaviour towards the quadri-algebra and the Hopf algebra structure. We
give some relations satisfied by weak stuffle products.
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Résumé. A partir de g-analogues aux fonctions zéta multiples, Singer détermine des g¢-
battages. Ceci motive, dans cet article, la construction d’une généralisation des produits de
battage et de battage contractant en produits de battage faibles et produits de battage con-
tractant faibles. Nous caractérisons ensuite les battages faibles et donnons comme exemple le
cas d’un alphabet a deux ou trois lettres. Nous comparons les structures algébriques respectées
dans le cas classique et dans le cas faible. Comme dans le cas classique, tout battage faible peut
étre muni d’une structure d’algebre dendriforme. En revanche, ils se comportent différemment
face a la tructure de quadri-algebre et d’algebre de Hopf. Nous donnons des relations vérifiées
par les battages contractants faibles.

Mots-clés. Algebres de battage, algebres de battage contractant, algébres dendriformes,
quadri-algebres, algébres de Hopf.
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Introduction

The notion of shuffle and stuffle algebras is widely used in several fields of mathematics. Indeed,
they participate in the study of Rota-Baxter algebras with the notion of mixable shuffle algebras
[14, 6, 20], in the study of Yang-Baxter algebras [21], in the study of quasi-symmetric functions
and words algebras [13], 24 25| 5] [4, 12} 33| 26], in the study of multiple zeta values [34] [15] 16,
19, (18, 17, 30, 8, 7] ...

The classical stuffle product comes from the product of classical multiple zeta values and is
defined by the relation

aubby = a(udbv) + b(aubv) + (a ¢ b)(ubv)

where a and b are letters, u and v are words and ¢ is an associative and commutative product
which is equal to 0 in the case of the classical shuffle product. Thus, the shuffle part of the



relation is symmetric and does not depend on letters of any words in the product. In his work,
Singer focuses on g-shuffle products coming from g¢-analogs of multiples zeta values. This case
enables the existance of some letters p and y satisfying a relation in the form of

yuOpv = pvOyu = y(ubpv)

for any words v and v. This new ¢-shuffle relation is not symmetric and depends on the beginning
of each word in the product. This leads to focus on new generalisations of shuffle and stuffle
products [31], [7, [§].

In this article, we present a new generalisation of shuffle and stuffie algebras, we study their
algebraic structures and compare them to the classical case. The article is organised as follows.

e In Section 1, we recall the classical notion of shuffle and stuffle product thanks to the
multiple zeta values as well as the calculation by Singer of g-shuffle associated to the
Schlesinger-Zudilin model and the Bradley-Zhao model.

e In Section 2, we define a generalisation of the classical shuffle product and the classical
stuffle product called weak shuffle products and weak stuffle products and prove a charac-
terisation of weak shuffle products. We detail the case of an alphabet of cardinality 2 or
3.

e In Section 3, we focus on algebraic structures respected by the classical shuffle product
and we determine if the weak shuffle products respect them too. Thus we prove that weak
shufle products are dendriform but there are obstacles to the quadri-algebra structure.

e In Section 4, we express some relations satistied by weak stuffle products and we express
the ¢-shuffle given by Singer in terms of weak stuffle product. Besides, in the case of
an infinite, countable and totally ordered alphabet {z1,...,2,,...}, we prove that, if the
contracting part in the weak stuffle products is expressed as f3(z; ® ;) € K*z;1;, then the
shuffle part is the null product or the classical shuffle product. We give some informations
more about weak stuffle products in the case of an alphabet of cardinality 2 or 3.

e In Section 5, we prove that a weak stuffle product is compatible with the deconcatenation
coproduct if and only if the underlying weak shuffle product is the classical shuffle product
and the contracting part is associative and commutative.

e Computation programs used to prove Lemma [18| are detailed in Section 6.
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1 Reminders

1.1 Classical shuffle and stuffle algebras

We recall here the definition of the stuffle product in the context of the multiple zeta values.

Definition 1. Let s be an integer and let (ky,... ks) be an s-tuple in N>o x N5~ The
multiple zeta value associated to (ki, ..., ks) is

1
C(k]_,...,ks): Z ﬁ
(ma,...;mg)eN T oo - 1Tl
my1>-->ms>0



On multiple zeta values, we consider the product of functions taking values in C. For instance,

¢(n)¢(m) =¢(m,n) + ((n,m) + ((m +n),
¢(n, p)¢(m) =C(m,n,p) + ((n,m,p) + ((n, p,m) +¢(n+m,p) +((n,p+m).

Then, it leads to the following algebraic definition and following theorem [15].

Theorem 2. Let X = {z1,...,ZTp,...} be a countable alphabet. Let K(X) be the algebra of
words on the alphabet X . We define the product x, called the stuffle product, by:

uxl=1lxu=1,
u*x0=0%u=0,
ziu * 250 =x;(u * 20) + T (xiu * v) + i (u*v)

for any letters x; and x; and any words u and v.
Then

ziuxy * £jor; =T;i(uxE * Tj0r)) + xj(Tiury * vry) + iy (uxy * vrg)
=(xu*x zjoz))xy + (Tiuxy * £v)r; + (LU * T0) Tl
and (K(X),x) is an associative and commutative algebra.
It is possible to define another algebra:

Theorem 3. Let X = {z1,...,2Tp,...} be a countable alphabet. Let K(X) be the algebra of
words on the alphabet X. We define the product Wi, called the shuffle product, by:
vl =1lwu=1,
uwlW0=0wWwu=0,
ziu W v =x;(u W z;jv) + zj(zu W v)
for any letters x; and x; and any words u and v.
Then
zriuxy W xjor; =z;(uxy W zvr;) + zj(rucy W vx)

=(zu W zjvr))x, + (viuc, W x0)x
and (K(X), W) is an associative and commutative algebra.

Theorem 4. Let X = {x1,...,Zpn,...} be a countable alphabet. The algebras (K(X),x) and
(K(X),ww) are isomorphic.

Proof. This theorem was proved by Hoffman [16, Theorem 2.5] by describing an explicit iso-
morphism exp. Another construction of exp leading to the proof of this theorem is given in [20
Proposition 41]. O

1.2 ¢-shuffle products for the Schlesinger-Zudilin model and the Bradley-
Zhao model.

Let ¢ be real number such that 0 < ¢ < 1. A g-analogue of a positive integer m is defined by

mly = 7= =1+at g

The Schlesinger-Zudilin model [28], 36] is defined as the following g-sum:
miki+-+mpkn

(e q
qsz(kl,...,kn) =(1-¢q) (kv++kn) Z kl

(m1,...,ms)EN [ml]q "‘[mn]
mi1>-->mg>0

kn
q



qml ki+-dmpkn

B (ml,%:ns)eN (I —gm)kr. . (1 —gmn)kn
mi1>-->mg>0

for any (ki,...,kn) € (N*)™.
The Bradley-Zhao model [2], 35] is defined as the following g-sum:

BZ (k14 tn) qml(k’l—l)-i-“--i-mn(kn—l)
g (kpyo kn) =(1—q)7 > i
(m1,...,ms)EN [ml]q s [mn}
mi>-->mg>0
Z qml(k’1—1)+~-+mn(kn—1)
= (ml,u.,ms)EN (1 — qml)kl . (1 - qmn)kn
mi>-->ms>0

kn
q

for any (k1,...,k,) € N* with k; > 2.

From those two models, Singer defined two ¢-shuffle products corresponding to the algebraic
version of the Schlesinger-Zudilin model and the Bradley-Zhao model and proved the following
two theorems in [29] 30] [31]:

Theorem 5 (Singer). Let X = {y,p} be an alphabet. The q-shuffle product associated to
the Schlesinger-Zudilin model is given by: for any words u and v,

1. lwgzu=ullgy 1 =u,

2. yulWgz v =vWsz yu=y(ulsz v),

3. pu sz pv = p(u Wgz pv) + p(pu Wsz v) + p(u Wsz v).
Besides, it is an associative and commutative product.

Theorem 6 (Singer). Let X = {y,p,p} be an alphabet. The q-shuffle product associated to
the Bradley-Zhao model is given by: for any words u and v,

1. lLLIBZu:uI_I_IBZI:u,
2. yullgz v =vWgzyu=y(ullpyv),

3. aulWpz bv = a(uWpz bv) + blau Wpz v) + [a,bla(u Wpz v) where
a,b € {p,p}, [p,p] = —[p,p] =1 and [p,p] = [p,p] = 0.

Besides, it is an associative and commutative product.

2 Definition and characterisation of weak shuffle products

The aim of this section is to define a generalisation of the classical shuffle product, the classical
stuffle product, and the two g-shuffle products given by the Schlesinger-Zudilin model and the
Bradley-Zhao model. We give and prove a characterisation of weak shuffle products too. Then
we explicit the case of an alphabet of cardinality 2 or 3.

2.1 Characterisation

Definition 7. An alphabet is a non-empty finite or countable set X .

Definition 8. Let X be an alphabet. We denote by X* the set of words on the alphabet X
and by K(X) the tensor algebra generated by X (i.e. the algebra of words on X ). The space
K(X) is graded by the length of words.



Definition 9. Let X be an alphabet. A weak stuffle product on K(X) is an associative and
commutative product O such that for any (a,b) € (X)* and any (u,v) € (X*)?

w1 =10u = u,
100 =00u = 0,
aubby =fi(a ® b)a(ubbv) + f2(a ® b)b(aubv) + f3(a ® b)(ubv)

where
1. f1 and fo are linear maps from K.X @ K.X to K,

2. fs = kg is a linear map from K. X @ K.X to K.X such that k(a®b) € K and g(la®b) € X
for any (a,b) € X2,

3. If f3 =0 then the product O is called a weak shuffle product.

Examples. Let X = {xj,...,2y,,...} be an infinite alphabet.

1. The classical shuffle product on K(X) is a weak stuffle product where fi(a ® b) = 1 and
fala®b) =1 for any (a,b) € X2, and f3 = 0.

2. The classical stuffle product on K(X) is a weak stuffle product where fi(a ® b) = 1 and
f2(a®b) =1 for any (a,b) € X?, and f3(x; ® x;) = ;4 for any (i,5) € (N*)2.

3. The stuffle products on K(X) given by Hoffman and Thara in [I§] is a weak stuffle product
where fi(a ®b) = 1 and fa(a ® b) = 1 for any (a,b) € X2, and f3(x; ® ;) = —w;4; for
any (i,) € (N*)?.

Theorem 10. Let O be a product on K(X). The map O is a weak shuffle product if and
only if, for any distinct letters a, b, and ¢ in X:

1. fila®b) = fa(b®a).
2. (a) either fi(a®a) = fa(a®a) =« with o € {0,1} and
i. fila®Db)fi(b ®a)[f1(a®a)—1]—0
i. fila@a)fifa@b)[file®b) —1] =
ii. fila®a)fi(b@a)fi(b®@a)-1] =
(b) or fila®a) =«, fa(a ®a):1—awztha€]Rand
i. fila®b) =1,

i. f1(b®a)=0.
3. fila®d)filb@c)[fila®c) —1] = 0.
4. ngO

Remark. It is sometimes usefull to use in calculations the following statement induced by
the item 2B of the Theorem [IC0k
'If fila®b) =0o0r fi(b®a)#0 then fi(a®a) = fa2(a®a) =« with o € {0,1}."

Proof. Let us prove first the direct implication. Let us assume O is a weak shuffle product. Let
a, b, and c be three distinct letters. Then, by direct calculations,

(A) aOb = bOa gives relation fi(a®b) = fo(b® a).

(B) aOaa = aaOa gives fi(a®a) = fa(a®a) or fila®a) =1— fa(a® a).



(C) aOab = abOa gives, if fi(a®b) =0 or f1(b®a) # 0, that fi(a®a) = f2(a ® a). Thus, if
fila®a) =1— fola®a) and fi(a® a) # 5 then fi(a®b) # 0 and f1(b®a) = 0. The
relation aOab = abOa implies fi(a ® b) = 1.

(D) (aB8a)0b = a0(adb) = (aOb)Oa with fi(a ® a) = fa(a ® a) give

(a) fila®b)fi(b®a)lfila®a)—1] =0,
(b) fila®a)fi(a®b)[fila®b)—1] =0,
(¢) fila®a)f1(b®@a)[fi1(b®a)—1] =0.

(E) (aOb)Oc = aO(bOc) gives fi(a®@b)f1(b® ¢)[fi(a®c)—1] =0.

S~

(F) (a0a)0ab = aO(aOab) implies that if fi(a ®a) =1 — fa(a®a) = 3 then fi(a®b) =1
and fi1(b®a) = 0.

(G) (aDa)Oaa = aO(abaa) and (a0a)Oaaa = ad(aOaaa) implies that if f1(a ® a) = fa(a ®
a) = a then a € {0,1, 3}.

(H) Cases baOa = aOba, aa0b = bOaa, abOc = cOab and (aOa)Oa = aO(aOa) do not give
any further relations.

As consequencies, in the theorem [I0]

e the item [l|is proved by the item |(A)]

the item [2a] is proved by the items (D)} and |(G)
the item [2b|is proved by the items and

the item [3|is proved by the item |(E)}

e the item [ is satisfied by the definition of a weak shuffle product.

Conversly, if O satisfies all relations given in Theorem [10| then for any couple (u,v) and any
triple (wy, w2, ws) of words such that length(u) + length(v) < 3 and length(w;) + length(ws) +
length(ws) < 3 one has: uOv = vOu and (w1 Ows)Ows = wiO(weDws).

We assume now there exists an integer n > 3 such that uOv = vOu and (w;0wy)Dws =
w1O(weOwsg) for any words w, v, wi, wy with length(u) + length(v) < n and length(w;) +
length(ws) + length(ws) < n.

Let now u and v be two words such that length(u) + length(v) = n 4 1. Then there exist
two letters a and b and two words w; and wy (not necessarily non-empty) such that v = aw;
and v = bwy. Then, by induction, we get:

case a # b.

uOv =f1(a ® b)a(w;Obws) + f1(b ® a)b(aw; Ows)
=f1(a ® b)a(bwOw;) + f1(b ® a)b(wr0aw;) = vOu.

case a = b and fi(a®a) = fo(a ® a).

uOv =f1(a ® a)a(wi;Oaws) + f1(a ® a)a(aw; Dws)
=f1(a ® a)a(awz0w;) + f1(a ® a)a(wr0aw;) = vOu.



case

a=>band fa(a®a) =1- fi(a®a). There exist two words ws and wy, not necessarily
non-empty, not starting by a and two positive integers k and [ such that w; = a...aws

k times
and wo = a...awy. First of all, by induction,
——

[ times

a...ala...a= a...a .
N——— N~ N——

k times [ times k+1 times

Besides, relations satisfied by O enjoin fi(a®c¢) =1 and fa(c®a) = 0 for any letter ¢ # a.
So,
Ov=(a...ala... O =(a...ala... d = yOu.
udv = (a...a0a...a)(wsOwy) = (a...a0a...a)(wsOws) = v0u

k times [ times [ times k times

As a consequence, O is a commutative product.

Let now w1, we and w3 be three words such that length(wy)+length(ws)+length(ws) = n+1.
Then there exist three letters a, b and ¢ and three words wy, ws and wg (not necessarily non-
empty) such that w; = awy, we = bws and ws = cwg. Then, by induction, we get:

case

case

a, b and c distinct.

(w1 Dwg)D’wg =f1 (a ® b)fl ((Z ® c)a[(w4wa5)Dcw6] + f1 (CL ® b)fl (C
+f1(b® a) f1(b ® ¢)b[(awsOws)Ocws] + f1(b® a)fi(c

a)cla(wsObws) Dwg|
b)c[b(aw4Ows) Dwg]

and

w1 O(wzBws) =f1(b @ ¢) fi(a ® b)awsBb(wsDecwg)] + f1(b @ ) f1(b ® a)blawsD (wsDcw)]
+fi(c®Db) fi(a ® c)alwsOc(bwsOws)] + f1(c @ b) fi(c @ a)clawsO(bwsDwg)].

However
(w4Obws)Ocws = waO(bwsOcwg) = f1(b ® ¢)wsOb(wsDcwg) + f1(c ® b)wsOc(bwsDws),

aw40(bwsOwg) = (awsObws)Dwg = f1(a ® b)a(wsObws)Dwg + f1(b @ a)b(awsDws)Dws,

and f; satisfies fi(z @ y)fi(y ® 2) (fi(zr®2) —1) = 0 for any set {z,y,z} € X. Thus,
(w1 Dwg)Dwg = U}lD(U}QDU}g).

a="band (a # c¢). By commutativity it is the same case as (a = cand b # a) or (b= ¢
and a # b).

(w1 BOwy)Dws =f1(a ® a) f1(a @ ¢)a[(wgOaws)Dcwg) + f1(a ® a) f1(c ® a)cla(wsDaws)Dwe)
a®a

1\C
+f2(a ® a) fi(a ® c¢)al(awsOws)Ocwg] + fa ) f1(e ® a)cla(awsDws) Dwg]
and

w1 O(weBws) =f1(a ® ¢) f1(a ® a)alwsOa(wsOcws)] + f1(a @ ¢) f2(a @ a)alawsO(wsDews)]
+fi(c® a)fi(a ® ¢)alwsOc(awsBwg)] + fi(c ® a)*claw,O(awsDws)).

However
(wgDaws)Ocwg = waO(awsOcwg) = f1(a @ ¢)wygOa(wsOcwg) 4+ f1(c ® a)wysOe(awsDws),

awsO(awsDwg) = (awsOaws)Dwe = fi(a @ a)a(wsDaws)Dws + f2(a ® a)a(awsOws ) Owg,

and f; satisfies

1. If fi(a®a) = fa(a®a) € {0,1} then



(a) fila®b)filb®a)[fila®a)—1] =0,

(b) fila®a)fila®b)[fila®b)—1] =0,

(¢) ila®a)fi(b®a)[fi(b®a)—1] =0.
(

Thus, (wl\ng)\:‘w3 = wlﬂ(wgﬂw;;).
case a=b=cand fi(a®a)= fa(a ®a).

(w1 Ows)Ows =f1(a @ a)?a[(wsOaws)Daws] + f1(a @ a)
+/1(a ® a)?al(awsOws)Daws] + f1(a ® a)

and

w1 D(weDws) =f1(a @ a)?a[wsBa(wsDaws)] + fi(a @ a)?alawsD(wsDaws)]

+f1(a ® a)?a[wsOa(awsOwe)] + f1(a ® a)?alawsD(awsDwg)).

Thus, (wIDwg)Dwg = w1D(w2Dw3).

case a =b=cand fa(a®a)=1- fi(a®a). There exist three words wy, wsg and wy not nec-

essarily non-empty, not starting by a and three positive integers k, [ and m such that

w, = a...awy, wo = a...awg and wy = a...a wy. Besides, relations satisfied by O
S—— S—— ~——

k times [ times m times

enjoin fi(a®c) =1 and fa(c® a) = 0 for any letter ¢ # a. So,

(w7Dw8)Dw9

O O = ...ala...a)0aqa...
(w1 Dwy)Ows [(a aOa...a)0a a}

k times [ times k times

(w7Dw8)Dw9

= a...a
N———
k+l4+m times

wrO(wsDwg) | = w1 O(weDws).

:[a...aD(a...aDa...a)}

k times [ times k times

O]

Corollary 11. Let K be a field of characteristic 0, let X be a countable alphabet and let O
be a weak shuffle product on K(X).

1. There exists at most one letter a such that fi(a®@a) =1— fa(a® a).

2. If there exists a letter a such that fi(a ® a) =1 — fa(a ® a) then, for any word u and v,
the calculation of uOv does not depend on the value of f1(a ® a)

3. If fila®b) = filb®a) =1 then fila®a) = fala®a) = fL1(bRD) = fo(b®b) =1,
fila®c) = filb®c) € {0,1} and fi(c®a) = fi(c®b) € {0,1} for any c € X \ {a,b}.

Proof. 1. If there are two letters a and b such that a # b, fi(a®a) = 1 — fa(a ® a) and
fib®b) =1— fo(b®b) then 1 = fi(a®b) =0 and 0 = f1(b®a) = 1. Contradiction.

2. Let a such that fi(a®a) = 1 — fa(a ® a). If u and v are words in X* \ aX*, since
fila®b) =1 and fi(b® a) = 0 for any b # a, there does not exist any triple (w,u’,v")
such that «Ov = w(au Dav’).



3. If fi(a®b) = f1(b®a) = 1 then, the fact that fi(a®a) = fa(a®a) = f1(b®b) = fo(b®b) =1
comes directly from relations [2| given in Theorem To prove fi(a®c) = f1(b®c) €
{0,1} and fi(c®a) = fi(c®b) € {0,1} for any ¢ € X \ {a,b}, we use the relation
filz@y)fily® 2)[fi(r®z) —1] =0 for any z,y,z € X.

0

Proposition 12. Let K be a field of characteristic 0, X be a countable alphabet and O a
weak shuffle product on K(X). We denote by T the set T = {a € X, fi(a®a) € K\ {0,1}}. We
assume T # 0; so T is a singleton {a}. Let O’ be the weak shuffle product defined by

o fllu®v) = filu®u) foranyu®ve X ® X\ {a®al,
e filla®a)=1 and fola®a)=1.
Then, there exists an algebra isomorphism between (K(X),O) and (K(X),O’).

Proof. Thanks to Corollary we know that the weak shuffle O does not depend on the value
of fi(a® a). We define 1 : (K(X),0) — (K(X),O") by:

w if w¢aX*,
P(w) = Lw ifw=g...qw withw ¢aX*.
. —
n times

Since fi(a®b) =1 and fi(b®a) =0 for any b € X \ {a}, the linear map 1 is an algebra
morphism. It is trivially an isomorphism. O

Proposition 13. Let K be a field of characteristic 0, let X be an alphabet of cardinality 2
or 8 and let O be a weak shuffle product on K(X). Let O be the weak shuffle product defined by

o f1(a®b) =1 and f,(b®a) = 0 for any (a®b) € X®X such that a # b and f1(a®b) ¢ {0,1}.
o fila®b) = fi(a®Db) for any (a®b) € X @ X such that a # b and f1(a ®b) € {0,1}.
e fila®a)=fi(a®a) for any a € X and any i € {1,2}.

Then, there exists an algebra isomorphism between (K(X),0) and (K(X),O’).

Proof. If X = {a,b} then there is an one-parameter family of weak shuffle products O such that

fi(a®b) ¢ {0,1}. They are defined by fi(a®b) =k € K\ {0,1} and fi(b®a) = fi(a®a) =
fola®a) = fi(b®@b) = fo(b®b) = 0. We define O by changing k in 1. The map ¢ defined by
k%w ifw=a...aw with w' € bX*,
So(w) = n times
w else,

is an algebra isomorphism between (K(X),O) and (K(X),O’)

Let us now consider the case X = {a,b, c}. Without loss of generality we assume fi(a®0b) =
k € K\ {0,1}. The charactarisation of weak shuffle products given in Theorem [10] leads to the
following relations:

* filb®a) = fila®a) = fala®a) = fi(b®b) = f2(b®b) =0,
e fila®c)filc®a)=

e ib®c)fi(c®b) =0,

e fila®c)fi(c®b) =0,

e ib®c)filc®a) =



e filu®v)fi(v®w)[fi(u®w)—1] =0 where {u,v,w} = X.

Thus, the weak shuffle product O is one of the following:

1. fila®c)=filb®c) = filc®a) = filc®b) =0 and fi(c®c) = fa(c®c) € {0,1}.
2. ila®e)=1, filb@c)=peK* and fi(c®a) = fi(c®b) = fi(c®c) = fa(c®¢c) =0,
3. fila®e) =1, 1b®c) =1, filc®a) = fi(c®b) =0and fi(c®c) = falc®c) = 1,
CAla®e)= fi(b®c) =0, filc®a) =p € K*, fi(c®b) =1and fi(c®c) = falc®c) =0,
5. fila®c) = fib®c) =0, filc®a) =1, fi(c@®b)=1and fi(c®c) = folc®c) = 1,

6. fila®c)=f(b®c)=0, filc®a)=1, filc®b)=1and fi(c®c)=1— falc®ec),

7. fila®c) = L(b®c) = filc®a) =0, filc®b) =p e K* and fi(c® ) = falc® ) =0,
8. fila®c)=fi(b®c) = filc®a) =0, fi(c®b) =1and fi(c®c) = falc®c) =

9. fila®c)=peK*, filb®c)= filc®a)= fi(c®b)=0and fi(c®c) = falc®c) =

10. fila®c)=1, fi(b®c)= fi(c®a) = fi(c®b)=0and fi(c®c) = fo(c®c) =

We define O’ by fi(a®b) =1and fi(u®v) = fillu®v) f u®v #a®b. Let ¢ and s be the
maps defined by: for any word w,

Lw ifw=a...aw withw €bX*,

kn
(Pl(w): n times
w else,
and
. ’ . ’
e w  fw=c¢...ca...ac...c...c...ca...a ¢...c w withw €bX~”
k N o N — N ——— N~
( ) q1 times ni times g2 times qs times ns times gs41 times
p2(w) = 1
and (Qla" . 7qs+1) € NS+ )

w else.

From case [I] to case [3] and from case [9] to case [I0] the map ¢ is an algebra isomorphism
between (K(X),0) and (K(X), D). From case[d] to case[§|the map ¢, is an algebra isomorphism
between (K(X),0) and (K(X),0).

If maps f{ and fé do not take their values in {0, 1} we apply the previous process once again
to O'. And then, we find a weak shuffle product 0" such that f;”(u®v), fo"(u®v) € {0,1} for
any (u®wv) e X @ X. O

Conjecture 14. Proposition[13 is still true for any countable alphabet.

Remark. If X is an alphabet such that {a,b,c,d} C X and fi(a®b) ¢ {0, 1} then relations
1. fila®x)fi
2. ilb®@x)fi(r®b) =0,
3. fila®x)fi(r®b) =0,
4. filb®x)fi(zx ®a) =0,

—~

r®a)=0,

are still satisfied for any letter x € X. However, if 2,y € X \ {a, b}, even if they satisfy relations
given in Theorem it is hard to anticipate the part of x facing y.

10



2.2  Weak shuffle products on K({a, b})

Let X = {a,b} be an alphabet of cardinality 2. By using the characterisation given in Theorem
there are 10 families of weak shuffle products defined on K(X). Let C' be the 6-tuple

C = (fl(a® b),fl(b®a),fl(a®a),fg(a®a),f1(b®b),f2(b®b)). If k € K* and a € K then C
is one of the following 6-tuples

¢ =(0,0,0,0,0,0), Cy =(k,0,0,0,0,0), Cs =(1,0,1,1,0,0),
Cy =(1,0,0,0,1,1), Cs =(0,0,1,1,0,0), Cs =(0,0,1,1,1,1),
C7 =(1,0,a,1 — ,0,0), Cs =(1,0,a,1 — a,1,1), Co =(1,0,1,1,1,1),
Cho =(1,1,1,1,1,1).

For any n € [1, 10], we denote by O the weak shuffle product associated to C,,. The concatenation
n
of two words u and v is denoted by uv. The empty word is denoted by 1.

Case n = 2. Thanks to Proposition for any k € K* the weak shuffle product defined by Cy
is isomorphic to the case (1,0,0,0,0,0). Let u and v be two non-empty words. Then

E"uwv if (u=ga...a and v =bw with w € X¥)
v
n times

or (v=a...aand u=bw with w € X*),

0 else.

Cases n = 3 and n = 7. Thanks to Proposition [12]the weak shuffle products defines by C3 and
C7 are isomorphic. Let v and v be two non-empty words. Then

uv if(u=ua...aand v =>bw with w € X*)

or (v=a...aand u = bw with w € X*),

k+1
( +> a...a w if(u=ga...q andv=g...qw with w € bX*U{1})
—— —— ———

ubv =
3 k—+l times k times [ times
or(v=ga...a andu=ga...aqw with w € bX*U{1}),
~—— ~——
k times [ times
0 else,
uv if (u=a...a and v =bw with w € X*)
or (v=a...aand u=bw with w € X*),
a...a w if(u=ga...a andv=g...qw with w € bX*U{1})
and uOv = ¢, 7% D o
7 +1 times k times [ times

or(v=ga...q andu=ga...qw with w € bX* U {1}),
N—— N——
k times [ times
0 else.

Case n = 5. Let u and v be two non-empty words. Then

E+1—-1
a...a w if(u=ga...a andv=ga...qw with w € bX™)
k N—— N—— ——
k+1 times k times I times
or (v=ga...a and u=ga...qw with w € bX™"),
——r ——r
ullv = k times [ times

5
k+1 .
a...a ifu=a...a andv=a...aqa,
k —— —— N——"
k41 times k times [ times
0 else.

11



Case n = 6. Let u and v be two non-empty words. Then

k:+l—1>
a...a w
——

k—+1 times

l
a...a
——
k—+1 times
b...b w
——
k+1 times

N——
k—+1 times

Case n = 4. First, it is natural to ask whether or not this case is isomorphic to the case with
n = 37 In fact, not. A counter-example is given by the elements u of degree 2 such that

u? = 0. Indeed,

if(u=a...a andv=ga...qw with w € bX*)
S~—— N~——
k times [ times

or (v=ga...a andu=a...aw with w € bX™*),
S~—— S~——

k times [ times

ifu=a...a andv=a...aqa,
—— ———

k times [ times

if(u=0>...0 andv=>...bw with w € aX™*)
—— ——
k times [ times

or(v=">...b andu=D)...bw with w € aX™),
—— ———

k times [ times

ifu=>b...b andv=">...b,
—— N——

k times [ times

else.

1. with the case n =4, if u = Aaa + ubb + cab + 7ba then

u? =642bbbb + 27%baba + 2\paabb + 2\ Taaba + 6poabbb
+2u7 (babb + bbab + bbba) + 207 (abab + abba).

Sou? =0 <= p=71=0and {u € K({a,b}*),length(u) = 2 and u? = O}

Span(aa, ab).

2. with the case n = 3, if u = Aaa + pbb + oab + Tba then

u? =6\%aaaa 4+ 2 paabb + 6 caaab + 2 raaba.

Sou? =0 < X =0 and {u € K{{a,b}*),length(u) = 2 and u? = O}

Span(bb, ab, ba).

Let u and v be two non-empty words. Then

1. Ifu=ga...au and /,v € bX* U {1} then
——

m times

wOv = v0u = a...a(u Ov).
4 4 ~——— 4

m times

2. Ifu=b...bu,v=b...b v and v ,v" € aX* U {1} then
N—— ——

m1 times mo times

ugv: Z

k=0
mi1—1
+ > (
k=0

=v0Ou
4

mz_1 (m1+k— 1

) b...b (WO b...b w)
k S—— 4 =
m1+k times mo—k times

mo+k—1

f > b...b ( b...b ugv)

mo-+k times mi—k times

12



3. If u,v € aX™ then u!ilv = UE‘U =0.

Cases n = 8 and n = 9. We recall that the case n = 8 does not depend on o € K. Thanks to
Proposition [12] the weak shuffle products defined by C's and Cg are isomorphic. Let u and
v be two non-empty words. Then

1. fu=ga...au and v/,v € bX* U {1} then
——

m times

/

udv =v0u = @...a(uw Ov) = ubv = vOu.
9 9 ~—— 9 8 8

m times

2. Ifu=p...bu,v=>b...b v and v ,v" € aX* U {1} then
—— N——

m1 times mo times
m2_1 mi -+ ]{7 — 1 / /
ubv =" b..b (uO b...b w)
9 k SN——— 9 SN——
k=0 m1-+k times mo—k times

mi—1
k_l ! !
+ 3 <m2+ ) b...b ( b...b 400
k —— ~—— 9
k=0 mao+k times mi—Fk times

=v0u = uOv = vOu.
9 8 8

3. Ifu=qa...au,v=ga...av and v’ ,v" € bX* U {1} then
S~—— N——

k times [ times

k+1 '
uOv = v0u = a...a (uOv),
9 9 k ~—— 9
k-1 times
and
! !
udv=v0u= ga...q (uO0v).
8 8 —— 8
k+1 times

From the previous calculations, we have the following consequence:

Corollary 15. Let v and w be two words. Then vgw #0.

Remark. For cases n € {4,8,9}, since fi(a ®b) =1 and f1(b® a) = 0, the calculation
of ubDv where u = b...b v, v= b...b v and u',v" € aX* U {1} does not depend on
n o ——
m1 times mo times
the values of fi(a ® a) nor fa(a ® a). We give the value of ulilv(: ugv = ugv) for some

example couple (u,v) € (bX*)2. For some examples of pairs (z,p) € X x N*, to lighten
the notation, we write zP instead of x...z.

—

p times

Let (m, s, p,r) be a quadruple of positive integers. Then:

p—1 m—1

-1 k—1

bSO a’ = 2 : <m +: )bm+kasbpkar+ 2 : <p+k )bp+karbmkas‘
4 k=0 k=0

Let (m,s,p,r,t) be a quintuple of positive integers such that m > 2. Then:

p—1 t
-1 —1
bmasgbparbt :§ : <m+k )bm+kasbp—karbt+ } : <m+k )bparbm-‘rkasbt—k

k=0 k k=0 k
t
—1 —1
o ol G (O
f+g=m k=0 f
fenN*
geN*

13



Proposition 16. Let g be the weak shuffle product defined by Co. Let p be a positive integer

and n € {1,2,3}. We denote by K, ) the set

D

weX*
length(w)=n

Then, K(TMD) = {O}

Proof. We equip X* with the lexicographic order.

Aww, uP = 0}.

For any words v and w we denote by

max(vOw) the greatest word of length | = length(v) + length(w) which appears in vOw for

the lexicographic order.

Ifu= Z Apw then
weX*
length(w)=n
min(p,zn)
uf = Z )\ﬁ,(wg...gw)qt Z Z Z )\?Ull...)\fl‘}l(wlgl...gwl).
weX™ =2 (atye.a)Ep wi1<--<w,€X™
length(w)=n Vilength(w;)=n

1. If n = 1 then the result is trivial.

2. If n =2 then

P _ <2p)‘ _ N2 P _ o _ (2p)'
ad? = ~—"*a...a, ab’ = (p)°a...adb...b, ba’ =plba...ba, bV’ = b...b,
W = N—— N—— N—_—— P =
2p times p times p times p times 2p times
and
max(aa*0ab!Oba™Obb™) = a...ab...bba...ba.
9 9 9 N———
2k+1  2n+l m
times times  times
Thus )\aa == )\bb = )\ba = )\ba =0.
3. If n =3 then
3p)! 2p)!p!
wlzaaap:(p) a...a, wgzaabp:(p)p a...ab...b,
(3P —~— P Ao
3p times 2p times p times
2p)!p!
w3 =aba? = (p))?a...aba.. . ba, wy =abbP = (2p)'p a...ab...b,
N —— 2p N—— N~
p times p times p times 2p times
3p)!
ws =baa” = p'baa. .. baa, wgzbbbp:(p) b...b.
p times 3p times

For babP and bba?, there are several terms in the result. For bab? we will use wy = bab. .. bad
o
p times
and, for bba™ we will use wg = b...bba...ba. In fact, for the lexicographic order, we use
S~

p times p times
the maximal term obtained in each product. For any ¢ determine how build w; by doing

the weak shuffle of p words of length 3. We get Apaa = Aoy = Aaba = Abaa = Aaab = Aabb =
Abab = Avba = 0.

O]

Conjecture 17. Let E be the weak shuffle product defined by Cy. For any positive integers
p and n, we have K, ;) = {0}.
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Remarks.

1. By induction we can express max(u%v) for any words u and v.

Case w; and wy are in aX*. There exist o, 3 € N* and wll,w/z € bX* U {1} such that
w; =a...aqw; and wy = a...awy. Then,
S—— S——

« times [ times

I !
O = . O .
max(w; 5 w2) a..q max(w; . wsy)
a-+3 times

Case w; € aX* and wy € bX*. There exist o € N* and w; € bX* U {1} such that w; =
a...aw/l. Then,
——
a times
max(w;Ows) = a. .. a max(w), Dws).
X(wi1Bwz) = @. .. g max(w;Jws)

«a times

Case w; and wq are in bX*. There exist o, 5 € N*, p,q € N (they are not necessarily
different from 0) and wy,wy € bX* U {1} such that wy = b...ba...aw, and wy =
—— ——
o times p times
b...ba...aw;. Thus,
—— ——

[ times g times

e If 0 < g < p then

4 /
max(wiOwy) =  b...b a...amax(ba...aw;0w,).
9 —— N——— N——r 9
a+/B—1 times g times p times

e If 0 < p < ¢ then

/ /
max(wiOwg) =  b...b a...amax(w;0ba...aqws,).
9 —— 9 ~—~—
a+B—1 times p times q times

e If 0 < p and p = ¢ then max(wlng) = max (W, w2) where

’ /
w1 = b...b a...amax(ba...aw;0w,)
—— N——— —— 9
a+B—1 times g times p times
and
- ’ ’
wa= b...b a...amax(w0ba...aw,)).
—— N——— 9 S———r
a+£—1 times p times q times

o If p =0 (respectively ¢ = 0) then w; = b...b (respectively wy = b...b) and

« times [ times
max((wlgwg)) = wyws( respectively max((wlng)) = wowy).
For instance,

max(abgabaa) =aa max(bgbaa) = aabbaa,
max(bba%lbaa) = bbabaa,

max(bbbaaabbagbbaabbba) = bbbbaa max(baaabbagbbba) = bbbbaabbbabaaabba.
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2. For p = 2 Conjecture [17]is implied by the statement "Let n be a positive integer, let wy,
wy and w be three non-empty words of length n such that wy < we < w and w; < w.
Then max(uq%lwg) < max(wgw).“ We attend a reasoning by induction but there are some

obstructions. Indeed, it leads us to compare max(ulqu) and max(u;z,gzm) where u1 < us,

ug < uy, length(u;) = length(us), length(ug) = length(uyg) and (uy,u2) # (us,us). Then,
it leads us to determine if max(vlgvg) > max(vggm) or max(vlgvg) < max(vgglm)

where vy < w3, v9 > v4. If we consider v1 = a, vo9 = bb, v3 = ab and v4 = b, then we get
max(vlgvg) = abb = max(vggm).

By using computation programs realised with Maxima, (c.f. Section @ we get:
Lemma 18. Let n be a positive integer smaller than or equal to 7. Then K, 2 = {0}.

Proposition 19. Let X be the alphabet {a,b} and S be the set defined by S = {C ...Cio}
equipped with the relation = such that: for any A and B in S, A = B if and only if there
exists an homogenous isomorphism between (K(X),04) and (K(X),Opg) where 04 (respectively
Op) is the shuffle product associated to A (respectively B). Let n be the number of isomorphic
classes.

Then n € {7,8}.

2.3 Weak shuffle products on K({a,b,c})

Let X = {a,b, c} be an alphabet of cardinality 3. Let C' be the 12-tuple C' = (fl(a ®0b), f1(b®

a)afl(b®c)af1(0®b)afl(a®c)7fl(c®a)fl(a®a)7f2(a®a)afl(b®b)af2(b®b),fl(C®C),f2(c®c)).
By using Theorem |10} if (k,m) € (K*)? and « € K then C is one of the following tuples

¢y =(0,0,0,0,0,0,0,0,0,0,0,0), C =(0,0,0,0,0,0,1,1,0,0,0,0),
C3 =(0,0,0,0,0,0,1,1,1,1,0,0), C, =(0,0,0,0,0,0,1,1,1,1,1,1),

Cs =(k,0,0,0,0,0,0,0,0,0,0,0), Cs =(k,0,0,0,0,0,0,0,0,0,1,1),
C; =(1,0,0,0,0,0,1,1,0,0,0,0), Cs =(1,0,0,0,0,0,0,0,1,1,0,0),

C9 =(1,0,0,0,0,0,1,1,1,1,0,0), Cy0 =(1,0,0,0,0,0,1,1,0,0,1, 1),

C11 =(1,0,0,0,0,0,0,0,1,1,1,1), C12 =(1,0,0,0,0,0,1,1,1,1,1, 1),

C13 =(1,1,0,0,0,0,1,1,1,1,0,0), Cy4 =(1,1,0,0,0,0,1,1,1,1,1,1),

C15 =(k,0,0,m,0,0,0,0,0,0,0,0), Cy6 =(k,0,0,1,0,0,0,0,0,0,1,1),
Cy7 =(1,0,0,1,0,0,0,0,1,1,0,0), C1s =(1,0,0,1,0,0,1,1,1,1,0,0),

Ch9 =(1,0,0,1,0,0,1,1,0,0,1, 1), Co =(1,0,0,1,0,0,1,1,1,1,1, 1),

Ca1 =(k,0,0,0,m,0,0,0,0,0,0,0), Ca2 =(1,0,0,0,1,0,1,1,0,0,0,0),

Ca3 =(1,0,0,0,1,0,,1 — ,0,0,0,0), Ca4 =(k,0,0,0,1,0,0,0,0,0,1,1),

Co5 =(1,0,0,0,1,0,1,1,1,1,0,0), Ca6 =(1,0,0,0,1,0,,1 — o, 1,1,0,0),
Ca7 =(1,0,0,0,1,0,0,0,1,1,1, 1), Cog =(1,0,0,0,1,0,1,1,1,1,1,1),

Co9 =(1,0,0,0,1,0,c,1 — o, 1,1,1, 1), Cso =(k,0,m,0,1,0,0,0,0,0,0,0),
Cs1 =(1,0,%,0,1,0,1,1,0,0,0,0), Cs2 =(1,0,1,0,1,0,0,0,1,1,0,0),

Cs3 =(k,0,1,0,1,0,0,0,0,0,1,1), Cs4 =(1,0,1,0,1,0,1,1,1,1,0,0),

Cs5 =(1,0,1,0,1,0,1,1,0,0,1,1), Cs6 =(1,0,1,0,1,0,0,0,1,1,1,1),

Csr =(1,0,1,0,1,0,1,1,1,1,1, 1), Css =(1,0,%,0,1,0,a,1 — ,0,0,0,0),
Cs9 =(1,0,1,0,1,0,,1 — 0, 1, 1,0, 0), Cy =(1,0,1,0,1,0,,1 — ,0,0,1, 1),
Cy =(1,0,1,0,1,0,0,1 — o, 1,1,1, 1), Cy2 =(1,1,1,0,1,0,1,1,1,1,0,0),
Cy;3=(1,1,1,0,1,0,1,1,1,1,1,1)}, Cyu =(1,1,0,1,0,1,1,1,1,1,0,0),
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045 :(L 1a0a 1707 17 17 17 17 1> 17 1)5 046 :(17 1307 1707 17 1> 17 1’ 1,0(, 1- OZ),
Cy7 =(1,1,1,1,1,1,1,1,1,1,1,1).

Proposition 20. Let X be the alphabet {a,b,c} and S be the set defined by S = {C1 ...Cyz}
equipped with the relation = such that: for any A and B in S, A = B if and only if there exists
an homogenous isomorphism between (K(X),04) and (K(X),Opg) where O4 (respectively Op)
is the shuffle product associated to A (respectively B). Let n be the number of isomorphic classes.

Then n € [33,39].

Proof. Thanks to Proposition in any set, it is sufficient to consider that kK = m = 1. Thanks
to Proposition we can prove that cases Coo and Ca3 are isomorphic, cases Cos and Cag are
isomorphic, cases Cag and Cog are isomorphic, cases C3; and Csg are isomorphic, cases Csq and
(C'39 are isomorphic, cases C35 and Cyg are isomorphic, cases C'37 and C4; are isomorphic and
cases Cy5 and Cyg are isomorphic.

Let K1, K9 and K3 be the sets defined by:

° Klz{u: ZAxx, u2:O},

reX

Z Apw, u? = 0},

weX™*
length(w)=2

° ng{u: Z ApW, u2:0}.

weX™
length(w)=3

.KQZ{U

By using K; and K3, we conclude that Cg, C; and Cg are in three different isomorphic classes,
Cy, C1p and Cq;1 are in three different isomorphic classes, Cig, C17, Co2 and Coy are in four
different isomorphic classes, Cig, C1g, Cos and Ca7 are in four different isomorphic classes, C15
and Cs are in two different isomorphic classes, Cs1, Css and C33 are in three different isomorphic
classes, C34, C35 and C3¢ are in three different isomorphic classes, Cyo and Cyy are in two different
isomorphic classes. With K3, we prove that Cog and Chag are in two different isomorphic classes.
Those sets do not enable us to conclude if there exists an isomorphism between Cy and Cis,
between C15 and C1y4, between Cs4 and Cyo, between Csg and Cyy, between Cy3 and Cy7, between
045 and 047. ]

3 Weak shuffle algebras, dendriform algebras, quadri-algebras

Dendriform algebras [22] and quadri-algebras [I] are algebraic structures which enables one to
split the associativity. Actually, a dendriform algebra is an algebra A equipped with a left
product < and a right product > making the couple (A, < 4 >) into an associative algebra and
satisfying compatibilities. A quadri-algebra is obtained by splitting each product of a dendriform
algebra in two products and the four new products must respect compatibilities. So, a quadri-
algebra leads to two dendriform structures and the sum of the four products gives an associative
product.

Those two notions have been extensively studied. For instance, Loday and Ronco give the
free dendriform algebra on one generator as an algebra over binary planar trees [23]. Thanks to
dendriform algebras, Foissy proves |9, proposition 31] that the decorated Hopf algebra of Loday
and Ronco and the decorated Hopf algebra of planar rooted trees are isomorphic. Analogue
theorems of the Cartier-Quillen-Milnor-Moore theorem have been proved: by Ronco [27] for
dendriform algebras, by Chapoton [3] for dendriform bialgebras and by Foissy [10] for bidendri-
form bialgebras. The bidendriform case implies that FQSym is isomorphic to one decorated
Hopf algebra of planar rooted trees.
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About quadri-algebras, Aguiar and Loday [I] have determined a quadri-algebra structure on
infinitesimal algebras and have focused on the free quadri-algebra on one generator. Vallette
[32] has proved some conjectures given by Aguiar and Loday in [I, conjectures 4.2, 4.5 and 4.6].
Foissy has presented the free quadri-algebra on one generator as a sub-object of FQSym [I1].

In this section, we recall the dendriform algebra structure and the quadri-algebra structure
underlying the classical shuffle algebra. Then, we consider the case of weak shuffle algebras. We
prove that they can be equipped with a dendriform structure yet only two weak shuffle products
can be considered as coming from a quadri-algebra.

3.1 Dendriform algebras

3.1.1 Background

Definition 21. A dendriform algebra is a vector space D equipped with two < products =
such that Vx,y,z € D,

(r<y)<z=zx<(@y=<z2)+z=<(y>==2),
(x-y)<z=x (y < 2),
(x<y)=z+(x=y)=z=z> (y > 2).

Theorem 22. Let X be a countable alphabet and L1 be the classical shufflie product. We
define < and > respectively by:

au < bv = a(u W bv), au > bv = b(au Wv),

for any letters a and b and any words u and v. Then (K(X), <,>) is a dendriform algebra and
for any words u and v
ullv=u<v+u>»v.

Theorem 23. Let X be a countable alphabet and W be the classical shuffle product. We
define A\ and V respectively by:

ua A vb = (uLlvb)a, uaV vb= (uallwv)b,

for any letters a and b and any words u and v. Then (K(X), A, V) is a dendriform algebra and
for any words u and v
ullv =uANv+uVo.

3.1.2 Weak shuffle products

Theorem 24. Let X be a countable alphabet and O be a weak shuffle product such that
fila®a) € {0,1} for any letter a € X. We define the products < and > respectively by:

au < bv = fi(a ®b)a(uBbv), au = bv = fo(a @ b)b(auDv),
for any letters a and b and any words w and v. Then (K(X),<,>) is a dendriform algebra.

Proof. Let O be a weak shuffle product and let a, b and ¢ be three letters of X. Then:

(a <b) <c=fila®b)fi(a®c)fi(b® c)abc+ fi(a@b)fi(a® c)fa(b® c)ach,

< (bOc) =f1(a®@b) f1(b® c)abe + fi(a @ c) f2(b ® c)acb,

(a =b) < c=f2(a®@b)fi(b®c)fi(a® c)bac+ fala @ b)f1(b@ c)fa(a ® c)bea,
= (b<c¢)=fa(a@b)fi(b@c)fi(a® c)bac + f2(a @ b) f1(b @ c)fala @ c)bca,
(a0b) = ¢ =fi1(a®b) fa(a ® c)cab + fa(a @ b) f2(b ® c)cba,

(b=c)=f2(b®c)fao(a®c)fi(a®b)cab+ fo(b® c)fa(a® c)fa(a® b)cba
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Then (a = b) < ¢ =a > (b < ¢). If the three letters are all distinct or only two of them are
equal or a = b = c with fi(a ® a) = fa(a® a) € {0,1} the relations given by Theorem [10] imply
(a<b) <c=a=<(b0c)and (a0b) = c=a > (b>c). If a=b=cwith fi(a®a) =1— fa(a®a)
then (a < a) < a = a < (ada) and (a0a) = a = a > (a > a) if and only if fi(a ® a) € {0,1}
and then fi(a® a)fa2(a®a) =0.

We assume now there exists an integer n < 3 such that, for any non-empty words u, v
and w with length(u) + length(v) + length(w) = n, relations (v < v) < w = v < (vOw),
(u=v) <w=u>(v<w)and (udv) = w=u > (v > w) are satisfied.

Let u, v and w be three non-empty words such that length(u)+length(v)+length(w) = n+1.
There exist three letters a, b and ¢, not necessarily distinct and three words w1, v1 and wy, not
necessarily non-empty, such that v = auy, v = bv; and w = cw;. Then

1.

(u=<v)<w=fi(a®Db)fi(a
=fi(a®Db)fi(a
+f1(a® b)fi(a® c) fa(b ® c)alui Oe(bv Owy)],

u < (vOw) =f1(b® ¢) fi(a ® b)a[u1Ob(v1Ocwy )]
+ fa(b®c) fi(a ® c) fila @ c)a[ugOc(bvy Owy)].

¢)a[(u10bvy)Ocw] = fi(a ®b)fi(a @ ¢)afu1O(bviOcwy )]

®
& )fl( ) [ulﬂb(lecwl)}

(u=v) <w=faa®b)fi1(b® c)bl(auOvy)Dewy ],
u (v <w)=f1(b®c)f2(a®b)blauyO(viDewy )].

(uOv) = w =f1(a ®b) fa(a ® ¢)c[a(u1Obvy)Ocw | + fo(a @ b) fa(b ® ¢)c[b(au;Ovy)Oecw |,
u= (v=w) =f2(b®c)fo(a @ c)clausO(bv1DOwy)] = fa(b ® ¢) fala ® ¢)e[(ausObvy ) Dwy]
=f2(b® c) fa(a ® c) f1(a @ b)c[a(u1Obvy ) Ow |
+ f2(b® ¢) fala ® ¢) fo(a @ b)e[b(au Ovy ) Dwy .

Thus, (u < v) < w=u < (VOw), (u>v) <w=u> (v <w) and (uOvV) > w=u > (v >
w). O

By considering the right hand side rather than the left hand side, we get the following
definition and theorem.

Definition 25. Let X be a countable alphabet. An end weak shuffle product on K(X) is an
associative and commutative product Op such that for any (a,b) € (X)? and any (u,v) € (X*)?
then

waOpvb = f1 p(a ® b)(uOgvb)a + f2 p(a ® b)(ualgv)d,

where f1 g and fa g are linear maps from K.X ® K.X to K, uOg0 = 00gu = 0 and uOgl =
10gu = u.

Theorem 26. Let X be a countable alphabet and let Og be an end weak shuffie product such
that fi1,g(a® a) € {0,1} for any letter a € X. We define the products N\ and V by:

ua Avb = f1 g(a®b)(uOgvb)a, auV bv = fa g(a ® b)(uaDgv)b,

for any letters a and b and any words u and v. Then (K(X), A, V) is a dendriform algebra.
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Remark. Let a be a real number. Let O be the weak shuffle product satisfying fi(a®a) =
1— fo(a®a) = a for a unique letter a. Even if O does not depend on the value of «, to express
the algebra as a dendriform algebra the assumption a € {0, 1} is necessary.

3.2 Quadri-algebras
3.2.1 Background

Definition 27. A quadri-algebra is Q is a vector space equipped with four products ~\,, /*,
N and o/ such that: for any x,y,z € Q,

ENy)Nz=z\ (y-2), (z y)Nz=2 " (y < 2),
(/) Nz=z (yA=z), Ny Nz=z\ (y\ 2),
(r=<y) v z=2.(yV=z), (z=y) v z2=2\ (¥ 2),
and
y) Nz=x S (y > z2),
) fz=x N\ (y S 2),
(-y) Nz=2\ (¥ \(2)
where
r<y=xNyt+z.,Yy, rANy=z/y+x\y,
r-y=xy+x\ Y rVy=x\y+z,Yy,
and

ry=xy+tzrx Syt Syt \y=x<yt+x=-y=xAy+zVy.

Theorem 28. Let X be a countable alphabet and let LW be the classical shuffle product. The
products N\, ,/*, '\ and / are defined as follow:

auc\_ bvd = a(u W bvd)e, auc / bvd = a(uc W bv)d,

auc /" bud = b(au W vd)e, auc N\ bvd = b(auc W v)d

for any letters a, b, ¢ and d and any words u and v. Then (K(X),\, 7,\,v") s a quadri-
algebra.

Proof. Tt is proved in [I, Section 1.8]. The main ingredient of the proof is the following statement:
for any letters a, b, ¢ and d and any words v and v we have

auc W bvd = a(uc W bud) 4+ b(auc W vd) = (au W bvd)c + (auc W bv)d.

3.2.2 Weak shuffle algebras

Proposition 29. Let X be a countable alphabet of cardinality at least 2. Let O be a weak
shuffle product. There exists an end weak shuffle product O such that O = Og if, and only if,
O s the null product or the classical shuffle product.

Proof. 1t is sufficient to prove the proposition for an alphabet of cardinality 2 and assume
images of functions fi, f2, fi,g and fo g are subsets of {0,1}. Let C be the 6-tuple C' =

(fl(a ® b), fl(b ® CL), fl(a ® CL), fQ((I & a), fl(b 024 b), f2(b &® b)) .
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Case C' = (1,0,0,0,0,0). If O = Og then

aOpba = (fi,p(a®a)+ fop(a®a)fi p(a®@b))baa + fo pla® a)fie(b® a)aba

=aq0ba = aba.

Thus fop(a ® a) = 1 and then a0Opa = (fi,p(a®a)+1)aa # 0 and yet aOa = 0.
Contradiction.

Cases C' = (1,0,1,1,0,0) and C = (1,0,1,0,0,0). We recall that these two cases are isomor-
pth Ifo= Op then

aOpba = (fi1,p(a ® a) + fop(a ® a)fi,g(a®@Db))baa + fo 1 (
=(fLe(a®a)fie(a®b)+ for(a®a))baa + f15(
=baOga = aOba = aba.

) f1,E(b® a)aba
)f1,E(b® a)aba

a®a
a®a
Thus fip(a®a) = fop(a®a) = fip(b®a) =1 and fi g(a ® b) = —1. Contradiction.

Cases C' = (1,0,1,0,1,1) and C = (1,0,1,1,1,1). The same calculations as in the previous
case answer the question.

Case C = (1,0,0,0,1,1). If O = Op then

baOpb =f1 p(a®b) (fi,(b®b) + fop(b®b))bba+ fi p(b® a)bab
=ba0b = bba + bab.

Thus f1p(a®b) = fir(b®a) = fip(a®a) = fop(a®a) = fip(b®b) = fop(b®b) =1
with f1, (b ®b) + f2,2(b® b) = 1. Contradiction.

Cases C' = (0,0,1,1,0,0). If O = Op then

abOpa =f1 p(b®a) (fie(a®a) + fopla®a))aab + fi pla ® b)aba
=ab0a = aab.

Thus f1 p(a®b) =0, fip(b®a) =1and f1 g(a®a)+ fop(a®a)=1. Contradiction.
Cases C' = (0,0,1,1,1,1). The same calculations as in the previous case answer the question.

O]

Corollary 30. The construction used in Theorem[28 does not lead to a quadri-algebra struc-
ture on a weak shuffle product O except if O is the null shuffle or the classical shuffle.

4 Relations on weak stuffle products

Proposition 31. Let X be a countable alphabet, let a, b and c be three distinct letters in X
and O a weak stuffle product. Then:

1. By using the maps fi and fo coming from O, we define the product O by: aud by =
fi(a®b)a(ud'bv) + fola @ b)b(aud v) for any letters a and b and any words u and v. The
product O is a weak shuffle product.

2. The function fs is associative and commutative.
3. If fas(a®a) # 0 then fi(a®a) = fa(a®a) € {0,1}.
4. If f3(a®@b) # 0 then fi(a®a) = fala®@a) € {0,1} and f1(b®b) = fo(b®b) € {0,1}.
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5. If f3(a®a) € K*a then f1(b®a) € {0,1}.
6. If fs(a® a) € K*b then

(a) If f3(a®@b) #0 or f3(b®b) # 0 or there exists x € X \ {a,b} such that f3(b®@x) # 0
then fi(a®a) = fa(a®a) = f1(b@b) = fo(b®b) = fila®b) = fi(b®a) € {0,1}.
(b) If f3(a®b) =0 and f3(b®b) =0 then
i. either fi(a®a) = fa(a®a) = f1(b@D) = f2(b®b) = fi(a®b) = fi(b®a) € {0,1},
it. or fi(a®a) = fa(a®a) = f1(b®a) =1, f1(b&b)+ f2(b®b) =1 and fi1(a®b) = 0.
(¢) For any x € X \ {a,b} then
i fila®z) = filb@w),
i. fA(z®a)= fi(z®0D).

7. If f3(a®b) € K*a then:

(a) ilb®a) = fila®a)fi(a®b) = fi(b®a)f1(b&D).
(b) fila®b) = fi(b@b).
(¢) For any x € X \ {a,b} such that f3(b® x) ¢ K*x then
i. fila®z)=fi(b®x),
it. filx®@a)[l— fi(z®b)]=0.
(d) For any x € X \ {a,b} such that f3(b® x) € K*x then
i. ilb®a)= fi(z®a)fi(z®Db),
it. filb®z)= fila®b)fi(a® x),

8. If f3(a ®b) € K*c then:

(a) filc®c) = fa(c®c) €{0,1}.

(b) ilb®a) = fi(c®@a) = fi(a® a).
(c) fila®b) = fi(c®b) = fr(b@ D).
(d) fila®c)= fila®a)fi(b®b) = fi(b®c) = filc®c).

Proof. 1. Let a and b be two letters and let u and v be two words. By using words of length

length(u) + length(v) 4+ 2 appearing in auObv , we get the statement. In the sequel, the
use of the relations given in Theorem [I0] is implied.

. By using words of length 1 appearing in 20y, 0y, (x0y)0z and z0(y0z) for any letters
x, Yy, z, we prove that the function f3 is associative and commutative.

. We assume f3(a®a) # 0. Since aDaa = aaUOa and (aOa)Oaa = aO(aOaa) then fi(a®a) =
faa @ a) € {0,1}.

. We assume f3(a ® b) # 0. Since aOab = abOa, bOba = ba0b, (a0b)Oa = (aDa)0b and
(bOa)Ob = (bOb)Oa then fi(a®a) = fa(a®a) € {0,1} and f1(b®b) = f2(b®b) € {0,1}.
. This item is proved by using (a0a)0b = (a0b)Oa and aO(aOba) = (aOa)0ba.

. We assume f3(a ® a) € K*b.

(a) If fa(a®b) # 0 or f3(b®b) # 0, since fi(a®a) = fala®a) € {0,1}, fL1(b®b) =
fo(b®b) € {0,1}, (aOb)Oa = (aOa)Ob and (aDa)Oaa = aO(aOaa), then fi(a®a) =
fala®a) = fi(b®b) = fo(b®b) = fi(a®b) = fi(b®a) € {0,1}.

(b) If f3(a®b) =0 and f3(b®b) =0, since fi(a®a) = fo(a®a) € {0,1}, (aOb)0a =
(a0a)0b and (a0a)Oaa = ad(aOaa) then we prove the relations.

22



(c) This item is proved thanks to the relation (a00b)0a = (aOa)Ob.
7. We assume f3(a ® b) € K*a.

(a) This item is proved by using fi(a®a) = f2(a®a) € {0, 1}, f1(b®b) = f2(bob) € {0,1},
(a0b)0a = (aDa)0b and (bOa)O0b = (bOb)da.

(b) By using (bOb)Oa = (bDa)Ob and (a0b)Oba = aO(bOba) we prove fi(a ® b) =

fi(b®@Db).
(c) Those two subitems are proven by using (a0b)0Oz = (aOz)0b = (bOz)0a
(d) Those two subitems are proven by using (a0b)0Oz = (aDz)0b = (b0z)0a

8. We assume f3(a®b) € K*c. Then fi(a®a) = fo(a®a) € {0,1} and f1(b®b) = fa(b®b) €
{0,1}. By using the relations (a0b)Oc = (aOc)0Ob = (bOc)Oa, (aOb)Ob = (bOb)Oa,
(bOa)0a = (a0a)0b, (aO0b)Oaa = aO(bOaa) = b0 (aDaa and (bOa)dbb = bO(aObb) =
a0 (bObb) we prove all subitems.

Examples.

1. The g-shuffle product associated to the Schlesinger-Zudilin model is the weak stufie prod-
uct where fi(y ®p) = fily®y) = filp®@p) = folp®p) =1, filp®y) = faly ® y) =0,
fslp®@p)=p, f3(y®p) = fsly®y) =0.

2. The g-shuffle product associated to the Bradley-Zhao model is the weak stuffle product
where fi1(y®@p) = fily®Dp) = filp®@p) = i(P®p) = filp®@p) = f2(p®p) = /L(P®D) =
f2(p®Dp) = fily®y) =1, filp®y) = L(POY) = fo(y®y) =0, f3(p@p) = p, f3(PRP) = —p
fslyep)=fily®y) = fi(y®p) = fs(p®p) =0.

Corollary 32. Let X = {x1,...,2p ...} be an infinite countable alphabet. We assume O is
a weak stuffle product such that f3(z;®@x;) € K*xiy; for any positive integers i and j. Then, the
underlying weak shuffle produit is either the null shuffle product or the classical stuffle product
ie. (fi=0and f2=0) or (fila®b) =1 and fo(a®b) =1 for any letters a and b).

Proof. We use an inductive proof. First of all, since f3(x; ® x;) # 0 for any positive integer
i, we have fi(z; ® ;) = fo(x; ® ;). Besides, f3(x; ® 1) = 29 # x1 and f3(xo ® x2) # 0, so
filz1 @ 1) = fo(z1 @ x1) = fi(ze @ x2) = fa(x2 @ 22) = fi(x1 @ x2) = fi(ra @ z1) € {0,1}.

We assume there exists n € N* such that n > 2 and fi(z1 ® z1) = fi(z1 ® z,,) for any
m € [1,n]. Then, f3(x1®@z,) = Tpy1 and fi(z1 @ Tpp1) = fi(z1 @x1) fi(z1 @) = fi(z1 @z1).
Thus, fi1(z1 ® x1) = fi(z1 ® x,) for any positive integer n.

We assume now there exists k € N* such that fi(z1 ®x1) = fi(2; ®x;) for any i € [1, k] and
any positive integer j. For any i € [1, k], we know f3(x; ® xp11-;) = Tp+1 80, f1(Tpt1 @ ;) =
fi(xgy1—; @ z;) = fi(x1 ® x1). Besides, we know

fi(@p1 @ 2pq1) = fo(Tpp1 @ 2pg1) = fi(z1 @ 2pp1) = fi(@ @ 21).

Since f3(Tk+1® 1) = Tp1o, we have f1(Tr1 @ Tpi2) = f1(21 @ 2p42) = fi(z1 ®z1). We assume
there exists a positive integer j such that fi(zg4+1 ® Try14p) = fi(z1 ® 1) for any p € [1, 5]. As

f3(zhy1 ® 1’j+1) = Tj4j4+2 then
fi@es1r @ Tptjr2) = fi(zrsr ® Tp1) f1(@h1 @ zj41) = fi(z1 @ 1),
Finally, (fi =0 and fo =0) or (fi(a®b) =1 and fo(a ® b) = 1 for any letters a and b). O

By using the commutativity and the associativity of ks we have:
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Lemma 33. Let X = {a,b} be an alphabet of cardinality 2 and let O be a weak stuffle
product. The map f3 is one of the following:

1. There exists (A, ) € (K*)? such that f3(a ® a) = A\b, f3(a ®b) = pa and f3(b® b) = ub.
There exists (A, ) € (K*)? such that f3(a ® a) = Aa, f3(a®b) = pa and f3(b@b) = ”“;a.
There exists (A, 1) € (K*)? such that f3(a ® a) = \a, f3(a ®b) = pa and f3(b ® b) = ub.
There exists (A, 1) € (K*)? such that f3(a®a) =0, f3(a®@b) = pa and f3(b @ b) = \b.
There exists (A, ) € (K*)? such that f3(a ® a) = Aa, f3(a®b) =0 and f3(b @ b) = ub.

There exists A € K* such that fs(a® a) = Ab, f3(a®b) =0 and f3(b®0b) =0.
There exists A € K* such that f3(a ® a) = Aa, f3(a®b) =0 and f3(b®b) = 0.

ST B N T R

The map f3 is the null map.
By using Proposition [31] we have:

Proposition 34. Let X = {a,b} be an alphabet of cardinality 2 and let O be a weak stuffle
product. In the previous lemma, if f3 satisfies

1. Item[]) or item[3, then there are two cases:
e fila®b)=1 and fo(a®b) =1 for any (a,b) € X2,
e f1=0and fo =0.
2. Item[3 or item[]], then there are four cases:
e fila®b) =1 and fo(a®b) =1 for any (a,b) € X2,
e fi=0and fo =0,
e ilb®a) = fila®b) = fi(b©b) = f2(b©b) =0 and fi(a®a) = fa(a®a) =1,
o fila®b)=fi(b®b)=fo(b®b)=1and fi(b®a) = fila®a) = fa(a®a) =0.
3. Item[3], then we have:

o fila®b) e {0,1},
e filb®a) € {0,1},
e fila®a)= fa(a®a) € {0,1},
e f1(b®Db) = fo(b®b) € {0,1}.

4. Item[@], then there are three cases:
e fila®b) =1 and fo(a®b) =1 for any (a,b) € X?,
e fi=0and fo =0,
e fila®a)= fola®wa)=fi(b®a)=1, fi(a®b) =0 and fi(b®b) + fo(b®b) =1
5. Item[7, then we have:
° fl(b® (Z) S {0, 1},
e fila®a)= fo(a®a)e {0,1}.
6. Item[8, then we give the answer in Theorem [10,
Lemma 35. Let X = {a,b,c} be an alphabet of cardinality 3 and let O be a weak stuffle
product. The map f3 is one of the following:
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10.

11.

12.

15.

1.

15.

16.

17.

18.

19.

such that ypu = N2, f3(a®b) = Ae, f3(a®c) = Aa, f3(b®c) =
pa and f3(c® c) = Ae.

There exists (X, v, ) € (K*)3
Ab, fsla®a) =b, f3(b@b

)‘C; fg(&@C) = ¢ f3(b® C) = MC,

)=
There exists (X, v, 1) € (K*)? such that f3(a ® b) =
f3(a®a) =~a, f3(b®b) = ’\7 and f3(c® c) = e

There exists (A, v,p) € (K*)? such that f3(a ® b) =
fsla®a) =~a, f3(b®@b) =pb and f3(c®c) = Fe.

There exists (\,v,p) € (K*)? such that f3(a ® b) = ¢, fs3(a®c) = e, f3(b®c) = ue,
fala®a) =~a, f3(b@b) =2 and fs(c®c) = Ye.

Ae, fsla®@c) = e, f3(b®c) = pe,

There exists (X, v, 1) € (K*)? such that f3(a ®b) = ¢, f3(a ®@c) = ve, f3(b®c) = pc,
fala®a) = % , f3(b®b) = )‘“c and f3(c® c) = Y.

There exists ( ) € (K*)3 such that fs(a ®@b) = Ae, f3(a®@c) = e, f3(b® ) = uc,
fala®a) = l f3(b® b) = “ a and f3(c® c) = e

There exists (X, v, ) € (K*)? such that f3(a @ b) = ¢, f3(a®c) = e, f3(b® c) = puc,
fala@a) = 22c, f3(b®b) = pb and fs(c®c) = Ye

There exists (A, v,p) € (K*)? such that f3(a ® b) = ¢, fz3(a®c) = e, f3(b®c) = uc,
fala®a) = %C, f3(b®0b) = %“c and f3(c®c) = Fe.

There exists (A7) € (K*)? such that fs3(a ® b) = Ae, fsla®c) = ve, f3(b®c) = 0,
fsla®a) =~a, f3(b®@b) =0 and f3(c®c)=0.

There exists A € K* such that f3(a®b) = Ab, f3(a®c) = Ac, f3(b®c) =0, f3(a®a) = Aa,
f3(b®b) =0 and fz3(c®c) =0.

There exists (\,y) € (K*)? such that fs
fsla®a) =Aa, f3(b®b) =0 and f3(c®c

There exists (\,y) € (K*)? such that fs
fsla®a) =Aa, f3(b®b) =0 and f3(c®c

—

a®b) =M, fsla®c) = A, f3(b®c) =0,
= ~b.

- ~—

a®b) =N, fasla®c) = Ae, f3(b®c) =0,
= ~c.

~—

There ezists (\,v,p) € (K*)? such that fs(a ®b) = Ab, fs(a®c) = A, f3(b®c) = 0,
fsla®a) =Aa, f3(b@b) =~b and f3(c® c) = pc.

There exists (A, 7y, 1) € (K*)? such that fs(a ®b) = Ae, fs(a®ec) =0, f3(b®@c) = 0,
fala®a) =c, f3(b®@b) = pc and f3(c®c) = 0.

There exists (A\,v) € (K*)? such that f3(a ® b) = Ac, fs3(a®c) = 0, f3(b®c) = 0,
fsla®a) =~b, f3(b®b) =0 and f3(c @ c) = 0.

There exists A € K* such that f3(a ®b) = Ae, fs(a®c) =0, f3(b®c) =0, f3(a®a) =0,
f3(b®b) =0 and f3(c®c) =0.

There exists (A, 7,1, 7) € (K*)* such that yu = N2, f3(a®@b) = \a, fs3(a®c) = 0,
f3(b®c) =0, fs(a®a) =a, f3(b@b) = pa and f3(c®c) = Tc.

There exists (A, v,7) € (K*)3 such that f3(a ® b) = Aa, fsla®c) =0, f3(b®@c) = 0,
fala®a) =~a, f3(b®@b) =Xb and f3(c®c) = Tec.

There exists (A, v,7) € (K*)3 such that fs(a ® b) = Aa, fsla®c) =0, f3(b®@c) = 0,
fala®a) =~b, f3(b®b) = Nb and f3(c®c) = Tec.
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20. There exists (A7) € (K*)? such that f3(a ®b) = Aa, fz3(a®c) = 0, f3(b®c) = 0,
fala®a) = e, f3(b b) = Ab and f3(c®c) = 0.

21. There exists (\,7) € (K*)? such that f3(a ®b) = Aa, fs(a®c) = 0, f3(b®@c) = 0,
fala®a) =0, f3(b b) = Ab and f3(c® c) = Tc.

22. There exists (A, v, u € (K*)3 such that yu = N2, f3(a®b) = \a, fz3(a®c) =0, f3(b®c) =0,
fsla®a) =~a, f3(b®b) =pa and f3(c®c) =0.

23. There exists (\,7,7) € (K*)? such that f3(a ®b) = Aa, fz3(a®c) =0, f3(b®c) = 0,
fala®a) =~va, f3(b&b) = Ab and f3(c®c) =0.

24. There exists (\,7y) € (K*)? such that f3(a ®b) = Xa, fz3(a®c) = 0, f3(b®c) = 0,
fala®a) =~b, f3(b@b) =Xb and f3(c®c) = 0.

25. There exists A € K* such that f3(a ®b) = Aa, fa(a®c) =0, f3(b®c) =0, fa(a®a) =0,
f3(b®@b) = Xb and f3(c®c)=0.

26. There exists (\,v,p) € (K*)? such that fs(a®@b) = 0, fs(a®c) =0, f3(b®c) =0,
fsla®a) =Aa, f3(b@b) =7b and f3(c® c) = pc.

27. There exists (\,7) € (K*)? such that f3(a®b) =0, f3(a®c) =0, f3(b®c) =0, f3(a®a) =
e, f3(b®@b) =~c and fs(c®c) =0.

28. There exists (\,7y) € (K*)? such that f3(a®b) =0, f3(a®c) =0, f3(b®c) =0, f3(a®a) =
Ac, f3(b®@b) =~b and f3(c®c) = 0.

29. There exists (\,7) € (K*)? such that fs(a®b) =0, f3(a®c) =0, f3(b®c) =0, f3(a®a) =
Aa, f3(b®@b) =~b and f3(c®c) =0.

30. There exists A € K* such that f3(a®@b) =0, fs(a®c) =0, f3(b®c) =0, f3(a®a) = Ab,
f3(b®b) =0 and f3(c®c) =0.

31. There ezists A € K* such that f3(a®b) =0, fs(a®c) =0, f3(b®c) =0, f3(a®a)= Aa,
f3(b®b) =0 and f3(c®c) =0.

32. The map f3 is the null map.

Proof. We use the fact that the map f3 is associative and commutative, and then, we get the
lemma by direct quite long calculations. O

Proposition 36. Let X = {a,b,c} be an alphabet of cardinality 3 and let O be a weak stuffle
product. In the previous lemma, if fs satisfies one of the items |1}, [3, [3 [0, [8 then either
(fi=0and f>=0) or (fila®b) =1 and f2(a®b) =1 for (a,b) € X?).

5 Weak stuffle product and Hopf algebras

If O is the classical shuffle product or the classical stuffle product then the algebra (K(X), O) can
be equipped with a compatible coalgebra structure, thanks to the deconcatenation coproduct,
which makes it into a Hopf algebra. Are there other weak stuffle products compatible with the
deconcatenation? We begin by recalling the Hopf algebra construction for stuffle algebras given
n [16], 18, [I7]. We then turn to the case of weak stuffle algebras.

Theorem 37. Let X be a countable alphabet, let K(X) be the vector space generated by words
on the alphabet X. We assume there exists at least one product o on K.X which is commutative
and associative. We define the product x and the coproduct of deconcatenation A by:

au*bv = a(uxbv) + blauxv) + (a©b)(u *v)

26



and

A(w) = Z UV

()€ (K(X))?2,
Uv=w

for any letters a and b and any words u, v and w.
Then (K(X),x, A) is a Hopf algebra.

Proof. This theorem is proven in |16}, (I8, [I7] by induction and using the filtration given by the
length of words. O

Theorem 38. Let X be a countable alphabet of cardinality n € N U {+oo} and let O be a
weak stuffle product on K(X). We denote by A the deconcatenation coproduct. If A respects

O (ie. if A is an algebra morphism) then the underlying weak shuffle product is the classical
shuffle product.

Proof. Let O be a weak stuffle product. We assume the deconcatenation respects 0. Then, for
any distinct letters a and b:

A(aBa) = (fila®a) + fa(a @ a)) Alaa) + A(fz(a @ a))
= (file®a) + fola®a)) Alaa) + k(e © a)A(g(a ® a))
=(fila®a)+ fala®a))(aca®@1+a®@a+1® aa)
+k(a®a)(gla®a)®@1+1®g(a®a))
=A(a)0A(a)

=
S
b2y
—_
+
IS
®
S
_|._
—_
X
IS
=
_|._
=
=
®
N
=
S
X
—_
+
(=
02
IS
+
—_
02
S
&

=A(a)0A(D) = fi(a®@b)(ab@1+1®ab) + fi(b®a)(ba®1+1®ba) +a®@b+b®a
+k(a®b)(gla®@b)®@1+1®g(a®b)).

So, fila®a) = frla®a) = fila®b) = fi(b®a) =1.
The reversal is a particular case of Theorem O

6 Computation programs

We give computation programs realised to compute the weak shuffle of two words or to prove
Lemma In the sequel we assume the alphabet X is the set of integers {1,...,c} and a word
is a list [i1,..., ).

We first present a function which computes the weak shuffle product of two words. This
function, called weak_shuffle_product, takes as entries a list Rules which coresponds to the
values taken by f; and fo and two lists wl and w2 which represent the two words to use for
computations. We assume

Rules =|f1(1®2),...,fil®c¢),... file®1),..., filc®c—1),

f1(1®1),f2(1®1),...,f1(C®C),f2(C®C) .

As exit, the function return a list. Each element of the result is a list of two elements A and B:
A is the number of times the word represented by B appears in the weak shuffle product of wl
and w2.
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weak shuffle_ product (Rules ,wl,w2):=block ([nl,n2,ul ,u2,temp,res ,i,j,
vla,vlb,v2a,v2b ,P1,P2,g,d,L,r,s,c]|,

/t+——————— Initialisation of the values of the left side and
the right side ———x/
g:0,
d:0,
/+———— Computation of the cardinality of the alphabet. —x/

r:length (Rules),
s:sort (solve (cx(c+1)=r)),
c:subst(s[2],c),

/x+———— Message if the wvariable Rules does mnot correspond
to an alphabet. ———x/
if (notequal(c,floor(c)) or c<1) then print("erreur"),

/x+———— Computation of the length of words wl and w2. ———x/
nl:length(wl),
n2:length (w2),

/#+——————— We use the commutativity of the weak shuffle product
to avoid some sub—cases. The word with the smallest length
is on the left. ———x/
if nl<=n2 then (
ul :[[1] ,wl],
u2:[[1],w2]

)

else ( ul:[[1],w2],
u2:[[1],wl],
temp:nl,
nl:n2,
n2:temp

)
res:[[0],[]],

Sx—————— We will use a recursive call. ————x/
if equal(nl,0) then (
/x——— Limit case: wl is the empty word and

—y

w2 is any word.
res:[[[1],u2[2]]]
)
else (
/x+——— We compute the weak shuffle product thanks to the rela—
tion: au(wsp)bv=f1(alot b)a(u(wsp)vb)+ f2(alot b)b(ua(wsp)v)
here u and v are words and a and b are letters. — */
vla:create_list(ul[2][i],i,2,nl),
vib:ul [2][1],
v2a:create_list (u2[2][i],i,2,n2),
v2b:u2[2][1],
P2:[],
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/x—— We detemine f_1(vib\ot v2b) and f_2(vib\ot v2b). —=x/
if equal(vlb,v2b) then (

g:Rules [r+2%(—c+vlb) —1],
d:Rules [r+2%(—c+vlb)]

)7

if (vlb<v2b) then (
g:Rules [(vlb—1)%(c—1)+v2b—1],
d:Rules[(v2b—1)*(c—1)+vlb]

)7

if (vlib>v2b) then (
g:Rules[(vlb—1)%(c—1)+v2b],
d:Rules[(v2b—1)*(c—1)+vlb—1]

)7

/#+————— Recursive call. —————x/
if g0 then (
P1:weak shuffle product(Rules,vla,u2[2]),
Pl:create list ([g*P1[i][1],append ([vlb],P1[i][2])],
i,1,length(P1))
)7
if &0 then (
P2:weak_shuffle_product (Rules ,ul [2],v2a),
P2:create_list ([d«P2[i][1] ,append ([v2b],P2[i][2])],
i,1,length(P2))
)
res:append (P1,P2)
)

/x————— We rewrite the result for having only one occurence of
each distinct words. ———x/
L:create_list(res[i][2],i,1,length(res)),
L:unique (L),
res:create_list ([ratsimp (sum(if equal(L[i],res[j][2]) then res[j][1]
else 0, j,1, length(res))),L[i]],i,1,length(L)),

return(res)
)i

In the sequel, the functions aim at proving if the following statement is true or not for some
low n. Let n be a positive integer and let wy, we and w be three non-empty words of length
n such that w; < wy < w and w; < w. Then max(wlgwg) < max(wOw)? It is trivial for

n = 1. For n = 2, it comes from computations doing in the proof of [I6] Thus, those cases are
not treated.

The function words aims at building all words of length n with an alphabet of cardinality c.
It takes as entries the integers n and ¢ and returns a list where each element is a list coresponding
to a word. In the result, words are ordered by the ascending order.

words (n,c) :=block ([res ,i,j,U],
res:[],
if n=1 then res:create_list ([i],i,1,c),
if n>1 then (
U:words(n—1,c),
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res:create_list (append(U[i],[j]),j,1,c,i,1,length(U))
) s
return (sort (res))
);

The function spectrum_product aims at determining words appearing in the weak shuffle
product of two words wl and w2. It takes as entries a list Rules which gives the rules of
computation for the weak shuffle product, an integer » which is the length of the list Rules, an
integer ¢ which is the cardinality of the alphabet, and two lists w1l and w2 which represent the
two words to use for computations.

As exit, the function return a list ordered thanks to the ascending order where each element
is a list representing a word appearing in the weak shuffle product of two words w1l and w2.

spectrum_ product (Rules ,r,c,wl,w2):=block ([nl,n2,ul ,u2,temp,res,i,j,
vla,vlb,v2a,v2b,P1,P2,g,d],

/x—————— Initialisation of the values of
the left side and the right side ————x/
g:0,
d:0,
/+————— Computation of the length of words wl and w2. ——x/

nl:length(wl),
n2:length (w2),

/x——————— We use the commutativity of the weak shuffle product
to avoid some sub—cases. The word with the smallest length
is on the left. ———x/
if nl<=n2 then (
ul :wl,
u2:w2

)

else ( ul:w2,

u2:wl,
temp:nl,
nl:n2,
n2:temp
)7
res:[],
[x——————— We will use a recursive call. ———x/
if equal(nl,0) then (
/x—— Limit case: wl is the empty word and w2 is any word. —x/
res :[u2]
)
else (
/x+——— We compute the weak shuffle product thanks to the rela—

tion: au(wsp)bv=f1(a\ot b)a(ul(wsp)vb)+ f2(al\lot b)b(ua(wsp)v)
here w and v are words and a and b are letters. %/
vla:deleten (ul,1),

vlib:ul[1],

v2a:deleten (u2,1),

v2b:u2[1],

P2:0],

30



/x We detemine f _1(viblot v2b) and f_2(vib\ot v2b).
if equal(vlb,v2b) then (

g:Rules [r42%(—c+vlb) —1],

d:Rules[r+2%(—c+vlb)]
)

if (vlb<v2b) then (
g:Rules [(vlb—1)%(c—1)+v2b—1],
d:Rules [(v2b—1).(¢c—1)+vlb]
)
if (vlib>v2b) then (
g:Rules [(vlb—1)x(c—1)+v2b],
d:Rules[(v2b—1).(c—1)4+vlb—1]
)

/#+————— Recursive call. —————x/
if g0 then (
P1l:spectrum_ product (Rules ,r,c,vla,u2),
Pl:create_list (append ([vlb],P1[i]),i,1,length(P1))
)
if d>0 then (
P2:spectrum_ product (Rules ,r,c,ul,v2a),
P2:create_list (append ([v2b],P2[i]),i,1,length(P2))
)

res:append (P1,P2)

)

/«————— Words are written once with the ascending order. ————x/

res:sort (unique(res)),

return (res)

);

The function maximum_product takes as entries a list Rules corresponding to the weak shuffle
product, an integer r which is the length of Rules, an integer ¢ which is the cardinality of the
alphabet, an integer n which is the length of words used, a list W which represents the list
of words of length n, an integer [ which is the length of W, an integer k which is the level of
computation. The function returns a list of length & — 5. The first one is a list of only one
element which is max(W[G]%IW[fS]). In the result, the element p with 2 < p < k —5 is a list of

two elements A, and B, where A4, = max(max(wlgwg)) with w; < Wip| and wy < Wk] and
B, = max(W[p]%!W[p]). This function really depends on the weak shuffle product E.

maximum__product (Rules ,r,c,n,W,1 k) :=block ([res,i,P,init],
res:[],
if n>1 then (
/* Witj=[1,..., 1], W[2]=[1,...,1,2],
Wis)j=[1,...,1,2,1], W[4]=[1,...,1,2,2],
wis)=[1,...,1,2,1,1], W[6]=[1,...,1,2,1,2],
it s enouth to do an initialisation with

W[6]. %/
if k=6 then (
init:last (spectrum_ product (Rules,r,c ,W[6] W[6])),
res:[[init]]
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)
if (k>6 and k<l1+1) then (

/% Recursive call. ———x/

res :maximum_ product (Rules ,r,c,n,W,1 ,k—1),

/x— Maximum word in res. —x /
P:[last (sort(res[length(res)]))],

/x—— P is filled in mazimum words in W[i](wsp)W[k]
for i:1 thru k—1 do (

P:append (P, [last (spectrum__product(Rules,r,c , W[i] , W[k]))])

)

/x+—— res is filled in a list of two elements:

the mazimum in P and the mazimum in W[K](spw)W[k]. —x/

res:append(res ,[[last (sort(P)),
) last (spectrum__product (Rules ,r,c, W[k] ,W[k]))]])
)

return (res)

)’.

The function proof_statement determines if the statement given at the beginning of the
section is proved for words of length n. As entries, it takes a list Rules corresponding to the weak
shuffle product and an integer coresponding to the length of words used. It returns a boolean.
The boolean is true if the statement if satisfied and false if the statement is not satisfied. Since

this function uses maximum_product, it depends on the weak shuffle product E.

proof statement (Rules ,n):=block ([res ,P,U,i,p,c,r,s ,W,1],
/#————— Computation of the cardinality of the alphabet.
r:length (Rules),
s:sort (solve (cx(c+1)=r)),
c:subst(s[2],c),

/#———————— Message if the wvariable Rules

does not correspond to an alphabet.
if (notequal(c,floor(c)) or c<1) then print("erreur")
else (

/x————— Computations. ——————x/

res:true,

/«+————— Building of words of length n. ——x/
W:words (n,c),

l:length (W),

/x———— Building maz(w(wsp)w) and maz(mazx(w_1{wsp)w 2)

with w Kw and w XK=w.

P:maximum_ product (Rules ,r,c,n,W,1,1),
p:length (P),
i:2,
/x————— Checking of the statement at level i. ————x/
while ( equal(res,true) and i<p+1) do (

if equal(P[i][1],P[i][2]) then ( res:false),

i:i+1

32



) )

return(res)

E
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